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Global Warming and progression of modern power networks have profoundly 
changed traditional power grids in terms of fossil fuel consumption and emission 
of toxic gases. Therefore, auxiliary power plants and ancillary services have been 
introduced as an effective alternative, to overcome these new challenges in power 
systems. In this work, the dynamic environmental economic dispatch (DEED) 
problem, is investigated by considering the plug-in electric vehicles (PEVs), 
minimizing the fuel cost and greenhouse gas emissions from fossil fuel units. In 
the mentioned problem, to make it more practical, various operational constraints, 
including valve-point loading effect (VPLE), ramp rate limits (RRLs) and 
generation capacity limits are considered. This paper proposes a new multi-
objective exchange market algorithm (EMA) based on the non-dominated sorting 
theory to find the Pareto front. In addition, the impacts of PEVs, as an uncertainty 
source, on the mentioned problem are analysed in four different charging 
scenarios. The efficiency of the proposed method has been detailed on three 
experimental systems and the obtained results are compared with other algorithms 
in this field. The results show that the maximum percentage reduction in costs for 
test cases 1 to 3, are about 2.13, 2.69, and 39.48, respectively, and bout 45.96, 
48.20 and 44.07, for emission, respectively. The comparative analysis verify the 
proposed method efficiency, and accuracy in solving the suggested problem. 
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Nomenclature 
 
List of symbols 

𝐹𝐶!(𝑃!) Fuel cost function of the ith thermal unit 
𝐴! ، 𝐵!  and 𝐶! Coefficients of thermal unit cost function i. 
D  and θ  Coefficients of VPLE 

𝑃! Generated power by thermal unit i 
𝐸!(𝑃!) Emission function of the ith thermal unit 

α, β, γ, 𝜁 and  𝜆  Emission coefficients of thermal unit  
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𝑃!,#$!% and 𝑃!,#$&' Minimum and maximum power generated 
by unit i at time t 

𝑃(,# and 𝑃),# 
Demand load and the power loses at time 
t. 

𝑙*+,# Charging load of PEVs, at time t 
𝑃!, previous output power of the ith unit 

𝐷𝑅! and 𝑈𝑅!  Down and up ramp rate limits of the ith unit 
𝐼𝑁𝐷-,!

./012-  and 
𝐼𝑁𝐷3,!

./012- 
Individuals in the first category 
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R A random number in the range of 0 and 1 

𝛿4 Value of the change in the share of the k 
member in the third group 

𝑊4 Feedback coefficient of the k member in 
the third group 

𝑅𝑎𝑛𝑘4 Rank of the k member in the third group 
𝑁565 Number of total population 

∆𝑛#-!  and ∆𝑛#3!  Amount of change in the variables of the 
members of the second and third groups 

𝛹#! Exchange market information 
𝜔- Risk factor for each member of group 2 

μ 
Risk increase coefficient that makes the 
last individuals of the ranking take more 
risks 

𝑔-4and 𝑔34 common market risk for the second and 
third groups 

𝑖𝑡𝑒𝑟$&' Maximum iteration 

𝑔$!% and 𝑔$&' Minimum and maximum common market 
risk 

𝑓!(𝑥) and 𝑓!(𝑦) 
Output of the ith objective function for 
solutions x and y 

𝐶𝐷! Crowding distance of the ith solution 
𝜑 Penalty coefficient 

Abbreviations 
DEED Dynamic Environmental Economic Dispatch 
PEVs Plug-in Electric Vehicles 
VPLE Valve-Point Loading Effect 
RRLs Ramp Rate Limits 
ELD Economic Load Dispatch 
EED Economic Emission Dispatch 
AI Artificial Intelligence 
DE Differential Evolution 
MCSA Modified Crow Search Algorithm 

Dy-NSBBO Dynamic Non-dominated Sorting 
Biogeography-Based Optimization 

NSGA-II Non-dominated Sorting Genetic Algorithm  
KKO Kho-Kho Optimization 
WOA Whale Optimization Algorithm 
COA Coyote Optimization Algorithm 
MSFLA Modified Shuffle Frog Leaping Algorithm 
ICA Imperialist Competitive Algorithm 
EPRI Electric Power Research Institute 
PDF Probability Distribution Function 
 
1. Introduction 

Power generation units play a significant role in the 
power system, to provide a reliable and safe electricity to 
consumers, in an economical and controllable manner. 
With the development of technology and industrialization, 
the need for electrical power is increasing gradually. On 
the other hand, meeting the increased power demand 
entails significant costs. Accordingly, reducing the power 
generation costs is remarkably involved in promoting the 
economic development of countries [1]. 

Supplying reliable energy at the minimum cost can be 
a very challenging subject that is highly dependent on grid 
operation and control strategies. So far, different 
operation concepts are considered to minimize the total 
cost of power generation units. In this regard, Economic 
load dispatch (ELD) is the most basic problem, as the 
cornerstone of operation studies, to provide the quality 
power to the customers, economically and safely. The 
ELD problem is defined as determining the optimal 

generations of power plants satisfying a set of different 
constraints, while minimizing total operating costs [2]. 

Mathematical methods cannot be used properly to 
address these problems due to the need for differentiable 
or continuous objective functions. Hence, various 
artificial intelligence (AI)-based optimization methods 
that randomly seek the optimal solutions are used 
effectively to solve the EED problem. As a result, these 
methods can be a suitable candidate. Some of these 
optimization techniques include Kho-Kho Optimization 
algorithm (KKO) [3], Whale Optimization Algorithm 
(WOA) [4], Coyote Optimization Algorithm (COA) [5], 
Modified Shuffle Frog Leaping Algorithm (MSFLA) [6], 
Modified Crow Search Algorithm (MCSA) [7], and 
Imperialist Competitive Algorithm (ICA) [8]. 

Integrating the environmental issues caused by 
produced emission gases from fossil fuel-based 
generators to the ELD problem, results in extending a 
single-objective problem to a multi-objective economic 
emission dispatch (EED) problem [9]. The EED problem 
is mentioned as a type of multi-objective problems with 
conflicting objectives. In other words, reducing the value 
of one-goal leads to increasing the value of another. 
Therefore, the appropriate solution must be obtained 
through an acceptable trade-off between different 
objectives. 

This new problem is more complex than the earlier 
one, which needs applying some new techniques to solve 
it. The purpose of this new problem is to minimize the fuel 
cost and emissions simultaneously, which has made it as 
one of the most important research topics, and directions 
in modern power system operation studies. Solving this 
complex problem considering practical system-operating 
constraints such as valve-point loading effect (VPLE), 
due to its very nonlinear and non-convex nature, is a very 
challenging problem that cannot be solved by using 
traditional and classical methods [10]. 

As the literature confirms, there are many researches 
focussed on this issue, some of them are addressed in 
following. 

One of the effective techniques to solve this problem 
is converting this two-objective problem to a single 
objective framework by using the classical optimization 
techniques. In this method the emission rate is considered 
as an operational constraint [11]. Depending on the 
problem model and solving strategy, this method has 
some complexities in finding a compromise solution 
among the fuel cost and emissions. 

Another method is addressed in [12], which applied 
the goal-based programming to solve the EED problem. 
However, this method needs more run-time to be 
converged. 

The classical optimization techniques are applied to 
solve the EED problem based on coordination equations 
that are not suitable for discontinuous cost functions. 
Therefore, in classical optimization methods, the cost 
curve must be estimated in proportion to the necessity of 
the problem. 

A popular strategy is to convert the multi-objective 
EED problem into a single-objective problem using the 
price penalty factor and then extract the Pareto Front by 
varying the values of weighted coefficients for cost and 
emission. The weighted coefficients method suffers from 
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two main drawbacks [13]. First, the uniform distribution 
of weighted coefficients does not always result in a 
uniform distribution of solutions. Second, the solutions 
existing on the non-convex portions of the Pareto front 
cannot be found using this method. 

In [14], the authors investigated various optimization 
problems in the field of operation of power systems, such 
as ELD, ELD in multi-area, ELD in the presence of 
combined heat and power (CHP) units, on the small- and 
large-scale cases and taking into account the effect of 
renewable energy resources. In this work, a modified 
version of the EMA is employed to solve the mentioned 
problems. In [15], the multi-objective EED problem is 
addressed using the combination emission with cost by 
the price penalty factor. In that research, a hybridization 
of adaptive inertia weight particle swarm optimization 
(PSO) and EMA, integrated with an effective constraint 
handling method is used for problem optimization. In [16], 
the bi-objective EED problem is solved by employing an 
improved bare-bone multi-objective PSO algorithm. In 
this algorithm, to extract the Pareto front and maintain the 
distribution diversity of Pareto-optimal solutions, the 
slope method and crowding distance are integrated in the 
algorithm. In addition, two operators’ pbest and gbest are 
improved to enhance the performance of the algorithm. In 
[17], to deal with conflicting objectives in the EED 
problem, the concept of non-dominated sorting is 
embedded in the squirrel search algorithm. In this work, 
the crowding distance mechanism along with an external 
depository is utilized to distribute the solutions well in the 
target space. 

On the other hand, the use of plug-in electric vehicles 
(PEVs) in recent years has received much attention due to 
their significant impacts on reducing emission and being 
a good option for storing electrical energy. Hence, many 
large automobile companies have turned to the production 
of these cars [18]. Increasing the number of EVs has 
caused the charging and discharging programs of these 
cars to be done in accordance with the load curve of the 
network. Therefore, it is always tried to direct the car 
charging mainly to non-peak times, and a portion of the 
stored energy in batteries of these cars is sold to the grid 
during peak hours. 

In [19], the economic unit commitment examines 
power systems integrated with renewable energy 
resources and PEVs, considering only the unit costs and 
regardless of emissions. In [20], an energy storage model 
with network vehicles is proposed for ELD in the smart 
grid. In this work, weighting coefficients are used to 
convert the two objectives optimization problem, 
including emission and cost objectives, into a single 
objective function. In [21], in addition to PEVs, the effect 
of wind turbines on the DEED problem is analysed. The 
solution approach used in this work is the multi-objective 
virus colony search, and the non-dominated sorting 
procedure is employed to extract the Pareto front. 

With the integration of PEVs in the power grid, the 
mentioned problem changes from optimal static power 
dispatch to dynamic ones. As a result, the complexity of 
the problem will be increased in the dynamic condition 
than in the static condition. 

So far, several methods have been proposed for 
solving the mentioned problem in dynamic condition, 

which, in general terms, they can be grouped into two 
major categories. The first category includes different 
classical methods based on mathematical equation used to 
solve the DEED problem, such as linear, quadratic 
programming and gradient methods [22, 23]. Most 
mathematical methods are based on iteration. Although 
these methods offer somewhat accurate solutions to the 
problem, they are faced with several limitations in real-
world problems, including the fact that the fuel cost curve 
of the units must be continuous. 

In addition, although this is not the case with dynamic 
programming methods and there is no limit to the 
continuity of the fuel cost curve, it will take a lot of time 
and memory to solve the problem if the number of units 
increases. 

Nevertheless, in intelligent algorithms, not only are 
they applicable to any problem without if the number of 
units any limitations, but also the time and dimensions 
required to solve the problem increase linearly with the 
number of units, making them a more suitable option for 
solving practical problems of ELD [21]. 

Among the algorithms used in recent researches to 
solve the DEED problem are the combination of multi-
objective crisscross optimization and differential 
evolution (DE) [24] constriction factor-based particle 
swarm optimization [25] and the self-adaptive parameter 
operator multi-objective differential evolution integrated 
with local search operator based on non-dominant sorting 
[26]. 

In this paper, an improved EMA is used to solve the 
dynamic environmental economic dispatch (DEED) 
problem considering PEVs. This meta-heuristic algorithm 
has two operators that generate intelligent random 
numbers and two operators that strongly and efficiently 
absorb random numbers towards optimal numbers, 
simultaneously. 

The main contributions of this paper are: improving 
the EMA, integrating the fast non-dominated sorting 
approach in the suggested method to find the pareto front 
of the problem, applying the addressed technique to the 
mentioned problem with modelling the PEVs, and 
evaluating the performance and effectiveness of the 
proposed method, by comparing the results obtained with 
the results of recent methods. 

The rest of the paper is organized as follow. The 
formula for the DEED problem and the mathematical 
model of PEV charging are shown in section 2. Section 3 
addresses the suggested technique in detail. The 
simulation results on different case studies are described 
in section 4. Finally, main conclusions and some 
suggestions for future works are stated in section 5. 

 
2. Problem Formulation 

In this section, the formulation of the EED problem is 
detailed. 

 
2.1. Fuel Cost Function  

The fuel cost function of thermal generation units is 
assumed to be a quadratic equation as [8]: 

𝐹𝐶!(𝑃!) = 𝐴! + 𝐵!𝑃! + 𝐶!𝑃!3                                   (1) 

𝐴!  ($/h) ، 𝐵!  ($/MW/h) and 𝐶!  ($/MW2/h) are the 
coefficients of thermal power plant cost function i. 
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2.2. The VPLE  

The fuel cost function considering the VPLE is 
modeled by adding a sine term to the objective function 
of Eq. (1) as [10]: 

𝐹𝐶!(𝑃!) = 𝐴! + 𝐵!𝑃! + 𝐶!𝑃!3
+ |𝐷 ∗ 𝑠𝑖𝑛 	{𝜃(	𝑃$!% − 𝑃	)} | 

(2) 

Where D ($/h), and θ (rad/MW) are the coefficients of 
VPLE, and 𝑃$!%  is the minimum generated power by 
thermal unit i. 

 
2.3. Emission Function 

The emission produced by each generation unit can be 
expressed in terms of generator output power as follow 
[9]: 

𝐸!(𝑃!) = 𝛼 + 𝛽𝑃! + 𝛾𝑃!3

+ 𝜁 𝑒𝑥𝑝(𝜆𝑃!)								P
𝐾𝑔
ℎ S		 

(3) 

In which, α, β, γ, 𝜁 and  𝜆 are the emission coefficients. 
 

2.4. The DEED Formulation  
The DEED problem formulation is similar to the static 

ELD, except that in the dynamic condition, the problem is 
investigated within 24 hours, and constraints such as the 
ramp rate limits (RRLs) are added to the problem. The 
DEED problem can be expressed as: 

𝑚𝑖𝑛	 UVV𝐸(𝑃!)
7!

!8-

39

#8-

,VV𝐹𝐶(𝑃!)
7!

!8-

39

#8-

X (4) 

 

2.5. The Effect of PEVs  
Despite the advantages of EVs over conventional 

vehicles, one of the biggest challenges in using these 
vehicles is that if they are connected to the power grid 
suddenly during peak consumption, there is a possibility 
of network disruption and equipment damage. This is 
mainly due to the coincidence of the time of return of car 
owners to the place of residence at the end of office hours 
with the peak consumption to the place of residence time 
[21]. 

Severe fluctuations and sometimes sudden ascent in 
the load curve typically occur due to power consumption 
for home chargers and superchargers [21]. To prevent 
such disturbances in the power system, it is necessary to 
exercise appropriate control and coordination between car 
charging and the grid. Generally, four different strategies 
to charge the PEVs are addressed. These techniques are 
including EPRI forecasted load profile according to the 
PEVs driver behavior, stochastic charging, peak and off-
peak charging. 

According to EPRI, more than 60% of the power is 
consumed in seven hours, from 10 pm to 4 am. The Peak 
and Off-Peak profiles indicate the worst and best 
situations of vehicles charge, respectively. Finally, the 
stochastic profile based on the uncertainty of the charge 
of EVs is a daily casual charge distribution. In this 
scenario the probability distribution function (PDF) is 
considered with a normal distribution by mean value of 
0.05. Table I shows the PDF for charging EVs based on 
different scenarios. 

 

2.6. Maximum and Minimum Generation Capacity 
Limits 

Each generation units must be operated within a 
certain range, due to some technical and economic 
reasons. The upper limit of this range is the nominal value 
of the generator and the lower one is the value that is 
necessary for the boiler stable operation. 

𝑃!,#$!% ≤ 𝑃!,# ≤ 𝑃!,#$&' (5) 

𝑃!,#$!%  and 𝑃!,#$&'  show the minimum and maximum 
generated powers by unit i at time t. 

 
2.7. Power Balance 

The sum of total power demand and power losses must 
be equal to the total power generated, as: 

V𝑃!,#

7!

!8-

= 𝑃(,# + 𝑃),# + 𝑙*+,# (6) 

𝑃(,#  is the demand load, and 𝑃),#  is the electrical 
power losses at time t. 𝑙*+,# represents the charging load 
of PEVs, at time t. The power losses is determined by 
using the B-matrix coefficient method. 

 
Table I. Charging scenarios of electric vehicles. 

Charging 
Scenario 

Time 
01:00-
06:00 

07:00-
12:00 

13:00-
18:00 

19:00-
24:00 

Pr
ob

ab
ili

ty
 D

ist
rib

ut
io

n 

EPRI 

0.100 0.010 0.021 0.016 
0.100 0.003 0.021 0.036 
0.095 0.003 0.021 0.054 
0.070 0.013 0.001 0.095 
0.050 0.021 0.005 0.100 
0.030 0.021 0.005 0.100 

Off-Peak 

0.185 0 0 0 
0.185 0 0 0 
0.090 0 0 0 
0.090 0 0 0 
0.040 0 0 0.185 
0.040 0 0 0.185 

Peak 

0 0 0.185 0.040 
0 0 0.185 0.040 
0 0 0.185 0 
0 0 0.185 0 
0 0 0.090 0 
0 0 0.090 0 

Stochastic 

0.057 0.087 0.038 0.028 
0.049 0.048 0.02 0.022 
0.048 0.011 0.021 0.055 
0.024 0.032 0.061 0.025 
0.026 0.021 0.032 0.035 
0.097 0.057 0.022 0.082 

 

2.8. Ramp Rate Limits  
The RRLs are the dynamic constraints, in terms of 

mechanical constraints and in the form of increasing or 
decreasing rates the output power. By considering this 
subject, the static EED problem is converted into a 
dynamic EED problem that prevents possible damage to 
the rotor. These RRLs are expressed as: 
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𝑀𝑎𝑥[𝑃!$!%, 𝑃!, −𝐷𝑅!\ 	≤ 	𝑃! 	
≤	𝑀𝑖𝑛(𝑃!$&' , 𝑃!, +𝑈𝑅!) 

(7) 

In which,	𝑃!, (MW) is the previous output power of the 
ith unit, and 𝐷𝑅! (MW/h), and 𝑈𝑅! (MW/h) are the down 
and up ramp rate limits of the ith unit, respectively. 

 
3. Proposed Approach 

The approach used in this work, consists of three 
general components: 

I. Employing the improved EMA 
II. Non-dominated sorting procedure and crowding 

distance calculations 
III. Constraint handling 

The main component of this approach is to use the 
improved EMA to optimize the intended problem. How 
this algorithm works is described in detail in Section 3.2. 
Nevertheless, since this algorithm is designed to address 
single-objective optimization problems, a mechanism is 
needed to find the Pareto front. For this purpose, non-
dominated sorting and crowding distance are embedded 
in the algorithm. 

 

3.1. Improved EMA 
In this algorithm, there are two different market modes 

in each iteration, and after each mode, the viability is 
examined and individuals are sorted based on the value of 
their assets [28]. At the end of each market situation, the 
primary, middle, and final members of the population are 
known as members of groups one, two, and three. How to 
trade stocks in different market conditions and in different 
groups is as follows: 

• Normal Mode 
After producing the initial population and calculating 

the value of individuals' stocks, in normal mode, 
individuals are divided into three categories based on the 
amount of assets and the value of their stocks. 

Then the first category, which includes individuals 
with the highest stock value, makes no effort to change 
their stock because of their position. [27]. 

However, individuals who are in the second category, 
change their shares according to the experience of the first 
category to reach the position of individuals in the first 
category and increase the value of their shares. The 
method of changing the shares of these individuals is as 
[28]: 

𝐼𝑁𝐷:
./0123 = 𝑅 × 𝐼𝑁𝐷-,!

./012-

+ (1 − 𝑅) × 𝐼𝑁𝐷3,!
./012- 

(8) 

𝐼𝑁𝐷-,!
./012- and 𝐼𝑁𝐷3,!

./012- are the individuals in the 
first category. R is a random number in the range of (0,1). 

In the third category, individuals change their stocks 
at greater risk than those in the second category because 
of the much lower stock value than those in the first 
category, as: [28]: 

	𝛿4 = 2 ×𝑊4 ×	[𝐼𝑁𝐷-,!
./012- − 𝐼𝑁𝐷4

./012;\   (9) 

𝐼𝑁𝐷4
./012;,%*< = 𝐼𝑁𝐷4

./012; + 𝛿4	 (10) 

𝑊4 = 2 × (𝑅𝑎𝑛𝑘4 −𝑁565 2⁄ )
𝑁565a 	 (11) 

𝛿4  is the value of the change in the share of the k 
member in the third group. 

• Oscillation Mode 

Similar to normal mode, the individuals are divided 
into 3 groups and the members of first group try to 
maintain their rank and remained unchanged. However, in 
the second group, the total shares of individuals is fixed 
and only the amount of some shares of each type increases 
and the amount of others decreases, so the total amount of 
shares of each individual remains unchanged. Initially, the 
number of shares of each individual increases according 
to [28]:  

∆𝑛#-! = 𝑛#-! −𝛹#! + (2 × 𝑅 × 𝜇 × 𝜔-) (12) 

𝜇 = 𝑡565 𝑁565⁄ 	 (13) 

𝑛#-! =V|𝑆#=|
%

=8-

	 (14) 

𝜔- = 𝑛#-! × 𝑔-4	 (15) 

𝑔-4 = 𝑔-,$&' −
𝑔-,$&' − 𝑔-,$!%

𝑖𝑡𝑒𝑟$&'
× 𝑘	 (16) 

𝛹#! = 𝜙! + 𝜃#!(𝑥)	 (17) 

∆𝑛#-!  is the amount of change in the variables of the 
members of the second group and 𝛹#!  is the exchange 
market information. R is a random number, 𝜔- is the risk 
factor for each member of group 2. μ is the risk increase 
coefficient that makes the last individuals of the ranking 
take more risks. 𝑔-4is a common market risk and decreases 
with increasing the iteration. 

In the second part of this section, it is necessary for 
each individual to sell some of his stocks of any kind at 
random in the same amount as he bought additional stocks, 
so that the total stocks of each individual remain 
unchanged. In this part, it is necessary for each individual 
to reduce his stocks by a total of ∆𝑛#3! . In this case, the 
value of each individual is equal to: 

∆𝑛#3! = 𝑛#3! −𝛹#! (18) 

∆𝑛#3!  is the amount of stock that each individual must 
sell. 

In this section, unlike group two, the total number of 
stock of individuals changes with trading and each 
member buys or sells some shares. The shareholders of 
the third group change some of their stock according to 
the following relation [28]: 

∆𝑛#; = (4 × 𝑟> × 𝜇 × 𝜔3) (19) 

𝑟> = (0.5 − 𝑟𝑎𝑛𝑑)	 (20) 

𝜔3 = 𝑛𝑡- × 𝑔3	 (21) 
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𝑔34 = 𝑔3,$&' −
𝑔3,$&' − 𝑔3,$!%

𝑖𝑡𝑒𝑟$&'
× 𝑘	 (22) 

∆𝑛#; is the amount of change in the variables of the 
members of the third group. rand is a random number, 𝜔3 
is the risk factor for each member of group 2. μ is the risk 
increase coefficient that makes the last members in the 
ranking take more risks. Finally, 𝑔34 is the usual market 
risk for the third group in the oscillation mode and 
decreases with increasing iteration. The flowchart of the 
proposed approach is drawn in Figure 1. 

 
Fig. 1. The flowchart of the proposed approach 

 

3.2. Non-Dominated Sorting Procedure and Crowding 
Distance Calculations 

In the multi-objective EED problem, the aim is to 
reduce both costs and emissions. Therefore, solutions 
cannot be sorted on the basis of less cost alone. In these 
cases, the concept of dominance is used. One solution 
dominates another, if the following equations are met 
simultaneously [29]. 

𝑓!(𝑥) ≤ 𝑓!(𝑦)							∀𝑖 = 1, 2, … , 𝑛	 (23) 

𝑓!(𝑥) < 𝑓!(𝑦)							∃𝑖 = 1, 2, … , 𝑛	 (24) 

Where, 𝑓!(𝑥)  and 𝑓!(𝑦) are the output of the ith 
objective function for solutions x and y, respectively. In 
addition, n represents the number of objectives. In the 
non-dominated sorting procedure, the solutions that are 
not dominated by any other solution form the first front. 
Regardless of the available solutions in the first front, the 
same procedure is repeated, and the non-dominated 
solutions form the second front, and so on. In addition, to 
maintain diversity, in each front, the crowding distance of 
the solutions is calculated according to the following 
equation [10]. 

𝐶𝐷! =
1
𝑛V

|𝑓!?-0 − 𝑓!@-0 |
%

08-

	 (25) 

Where 𝐶𝐷! is the crowding distance of the ith solution 
in that front, n is the number of objectives, and 𝑓!?-0  and 
𝑓!@-0  represent the output of the oth objective function for 
solutions i+1 and i-1, respectively. 

First, the solutions are ranked based on the front which 
they are on it (solutions on the first front are better than 
solutions on the second front, and so on). Then, solutions 
on the same front are ranked based on the greater 
crowding distance. Table II shows a comparison between 
the features of the proposed modeling and solution 
approach. 

 
Table II. Comparison between the features of the DEED 

problem and the proposed method. 
Proposed method DEED problem 

Individual Solution 
Shares Power output of units 

Total shares Total power 
Information of 

exchange market 
Problem data (e.g. power 

balance) 

Buying/selling shares Increasing/decreasing power 
outputs of units 

Number of 
shareholders 

Population (the number of 
solutions) 

Sorting based on the 
value of Assets or 

stocks 

Sorting based on front and 
crowding distance 

 
3.3. Constraint Handling 

Two steps are taken to satisfy inequality constraints 
such as generation capacity limits. In the first step, it tries 
to generate power within the acceptable range; in the 
second step, whenever it is violated, the power is 
corrected to the nearest margin of the feasible solution. 
Two actions are taken for equality constraints. In the first 

Start

Set initial parameters such maximum iterration, g1,min , etc.

Generating the initial population within the acceptable 
range of inequality constraints

Sort based on less non-dominated rank 
and more crowding distance

Check constraints

First group Second group Third group

Process related to 
the second category 
in the normal mode

Check constraints

End

is maximum 
iteration reached?

Yes

Individuals who are ranked 
among the best and weakes t 

(Usually 50% of the population)

The lowest individuals
 in the ranking l ist

Individuals at the top of
 the ranking lis t

 (usually 30% of the population)

Process related to 
the third category in 

the normal mode
Unchanged

Sort based on less non-dominated rank 
and more crowding distance

First group Second group Third group

Changes while 
maintaining total 

shares

Check constraints

Individuals who are ranked 
among the best and weakes t 

The lowest individuals
 in the ranking l ist

Individuals at the top of
 the ranking list

Changes without 
maintaining the total 
shares and more risk

Unchanged

Sort based on less non-dominated rank 
and more crowding distance

No

NORMAL 
MODE

OSCILLATION
 MODE
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one, the penalty function with a small value for the penalty 
coefficient is considered. The following equation shows 
the new fuel cost function by applying the penalty 
function. 

𝐹𝐶%*< = 𝐹𝐶0AB + 𝜑 × n∑ 𝑃!
7!
!8- − 𝑃( −

𝑃) − 𝑙*+n		
(26) 

Where, 𝜑  is the penalty coefficient, its value is 
considered small here, and 𝐹𝐶0AB is the fuel cost function 
before applying the penalty function. On the one hand, a 
small value cannot guarantee the exact fulfilment of the 
constraint; on the other hand, a large value for the penalty 
coefficient can lead to premature convergence. Hence, in 
the second action, to accurately satisfy the constraint, an 
intelligent search is performed during the algorithm 
optimization process according to Equations (12-17). In 
this way, it is tried that the total shares of individuals are 
always in such a way that the equality constraints are met. 

 

4. Simulation 
To confirm the effectiveness of the proposed 

algorithm in solving bi-objective DEED problems, three 
test systems including 6-unit static and dynamic systems, 
and 10-unit dynamic system with four electric vehicle-
charging scenarios are used. The parameter settings of the 
proposed algorithm for solving each of the test systems 
are presented in Table III. 

 

4.1. Test case I 
In the first case, a simple test system without PEV is 

used to test the effectiveness of the proposed algorithm on 
a 6-unit test system. Load demand is set to PD=500 MW 
and other coefficients of generation units are selected 
based on [18]. 

The Pareto front obtained by the proposed method for 
this test system is shown in Figure. 2. As can be seen from 
this figure, the proposed method can obtain extreme 
solutions (minimum cost and minimum emission) well, 
and although the solutions do not have a uniform 
distribution, due to the low run-time and high accuracy of 
the outputs, the diversity of solutions is acceptable. 

In addition, the best-compromised solution obtained 
by the proposed method is compared with the results of 
other methods in this field in Table IV. 

As can be seen, the results of the proposed method are 
better than the other methods in terms of fuel cost and 
emission. In addition, the proposed method, unlike the 
other two methods, despite the losses, satisfies the power 
balance well. 
 
Table II. Settings of algorithm parameters to solve 
different test cases. 

Parameters Test Case 
1 

Test Case 
2 

Test Case 
3 

Maximum 
Iteration 100 100 100 

Population 50 50 100 

g1 [max, 
min] 

[0.005, 
0.0005] 

[0.01, 
0.05] 

[0.01, 
0.05] 

g2 [max, 
min] 

[0.01, 
0.001] 

[0.02, 
0.005] 

[0.02, 
0.005] 

 

 
Fig. 2. Pareto front obtained by the proposed method 

for the test case 1. 
 

Table III. Comparison of results for test case 1. 

Method 
Dy-

NSBBO 
[18] 

Dy-
NSGA-II 

[18] 

Proposed 
method 

P1 173.11 165.87 125.047 
P2 149.52 158.13 130.376 
P3 65.36 78.78 51.295 
P4 47.41 55.44 60.097 
P5 30.07 22.61 106.949 
P6 34.51 19.23 81.591 

Cost 34141.32 34214.25 33484.34 
Emission 709.26 711.32 384.357 

 

4.2. Test case 2 
In this case, the same 6-unit test system with PEVs is 

employed to examine the proposed algorithm 
performance. The four PEV charging scenarios described 
in the previous section are applied. As the amount of 
charge changes over time, the problem will change to 
DEED. 

In this case, it is assumed that there are some EVs, 
18000 of low-hybrid vehicles equipped with 15 kWh 
batteries, 10000 of medium-sized hybrid vehicles with 25 
kWh batteries, and 12000 of pure electric vehicles 
equipped with 40 kWh [21]. As a result, the total charge 
of PEVs for one day will be 1000MWh. This amount of 
charge is significant for the current network. 

Figures 3 to 6 show the cost and emission for 4 
different charging scenarios of EVs during 24 hours, 
respectively. 

As can be seen from these figures, the best case is 
related to the Off-Peak scenario, in which the vehicles 
charging time is shifted to non-peak hours. Figure 3 
shows that in the EPRI scenario, costs and emissions are 
almost the same at all day-hours, due to the almost 
uniform distribution of PEVs charges during the day, and 
figure 5 shows that costs and emissions peaked during 
peak hours. In the stochastic scenario, due to the fact that 
the amount of charge per hour is random, the cost and 
emission increase or decrease irregularly, at any day-hour. 
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The total cost and emission obtained by the proposed 
method for different scenarios is compared with the 
results of other methods in Table V. 

 
Table IV. Total cost and emission for the test case 2. 

Method EPRI Off-
Peak Peak Stochas

tic 

Dy-
NSBB
O [18] 

Total 
Cost 

83650
9 

8352
11 

8526
66 849959 

Total 
Emissi

on 
18327 1825

0 
1839

5 18338 

Dy-
NSGA
-II [18] 

Total 
Cost 

85241
9 

8511
00 

8694
07 858470 

Total 
Emissi

on 
18542 1842

5 
1877

2 18669 

Propos
ed 

metho
d 

Total 
Cost 

84013
0 

8451
52 

8459
83 844670 

Total 
Emissi

on 

13374
.7 

9768.
6 

9722.
4 9940.3 

 
Table V shows that for both peak and stochastic 

scenarios, the results of the proposed method are better 
than the results of the other two methods, in terms of both 
cost and emission. In other words, for these two scenarios, 
the results of the proposed method dominate the results of 
the other two methods. In addition, for the other two 
scenarios, the results of the proposed method dominate 
the results of the Dy-NSGA-II method. 

It should be noted that in the case of the Dy-NSBBO 
method, for both EPRI and Off-Peak scenarios, we cannot 
speak with confidence about the superiority between the 
methods. Because the Dy-NSBBO costs less, while its 
emission is higher than the proposed method. 

The total cost of the EPRI scenario is lower than the 
Off-Peak scenario. This is due to the fact that load demand 
used in the test system is considered the same at all hours. 
As a result, since the vehicles is charged more uniformly 
in the EPRI scenario, the total cost will be lower. 

 

 
Fig. 3. The cost and emission for test case 2, in EPRI 

scenario. 
 

 
Fig. 4. The cost and emission of test case 2, in Off-Peak 

scenario. 
 

4.3. Test Case 3 
The third test system is a 10-unit system that takes into 

account the practical system constraints, including the 
VPLE, RRLs, losses and generation capacity limits, in the 
form of DEED over 24 hours. The demand load in this 
system is 900 MW and the system data are extracted from 
[18]. 

Since the complexity and scale of this test system is 
greater than the previous system, it is more appropriate to 
evaluate the performance of the proposed method. 

The best compromising solutions for 24 hours in four 
different scenarios are given in Figures 7 to 10. Also, the 
total cost and emission of the proposed method compared 
to other methods are presented in Table VI. 
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Fig. 5.The cost and emission for test case 2, in Peak 

scenario. 
 

 
Fig. 6. The cost and emission for test case 2, in 

Stochastic scenario. 
 
The proposed method for all scenarios is less costly 

and less emission than the other two methods. In other 
words, the results of the proposed method dominate the 
results of the other two methods for all four scenarios. 

Furthermore, with the increasing problem scale, the 
superiority of the proposed method over the other two 
methods is more clearly demonstrated.  

The percentage improvement in cost and emission for 
all three test cases and for different scenarios is shown in 
Table VII. As can be seen from this table, the costs and 
emissions obtained by the proposed method have been 
significantly improved, especially concerning emissions. 
The results in Table VII confirm the reduction up to 39% 
in costs and up to 48% in emissions. 
Table V. Total cost and emission for the test case 3. 

method EPRI Off-
Peak Peak Stocha

stic 

Dy-
NSBB
O [18] 

Total 
Cost 

20617
38 

20613
30 

20673
07 

206280
6 

Total 
Emissi

on 

15348
3 

15332
1 

15417
8 153778 

Dy-
NSGA

-II 
[18] 

Total 
Cost 

20692
98 

20654
76 

20734
24 

207301
7 

Total 
Emissi

on 

15544
3 

15468
5 

15593
2 

155801 

Propos
ed 

metho
d 

Total 
Cost 

14484
53 

14564
37 

14563
29 

144960
8 

Total 
Emissi

on 
92851 88506 87198 93063 

 
Table VII. The percentage improvement in cost and 
emission for all 3 test cases. 

Scenario Method 

Percentage 
improvement 

Cost 
(%) 

Emission 
(%) 

Test 
case 1 - Dy-NSBBO 1.92 45.80 

Dy-NSGA-II 2.13 45.96 

Test 
case 

2 

EPRI Dy-NSBBO -0.43 1 27.02 
Dy-NSGA-II 1.44 27.86 

Off-Peak Dy-NSBBO -1.19 46.47 
Dy-NSGA-II 0.69 46.98 

Peak Dy-NSBBO 0.78 47.14 
Dy-NSGA-II 2.69 48.20 

Stochastic Dy-NSBBO 0.62 45.79 
Dy-NSGA-II 1.60 46.75 

Test 
case 

3 

EPRI Dy-NSBBO 29.74 39.50 
Dy-NSGA-II 30.00 40.26 

Off-Peak Dy-NSBBO 29.34 42.27 
Dy-NSGA-II 39.48 42.78 

Peak Dy-NSBBO 29.55 43.44 
Dy-NSGA-II 29.76 44.07 

Stochastic Dy-NSBBO 29.72 39.48 
Dy-NSGA-II 30.07 40.26 

1 A minus sign means higher cost of the proposed method 
 

5. Conclusion 
Investigating different power system operation studies 

in modern power systems is an important task, which 
should be discussed, especially by considering some new 
concepts such as uncertainty, and environmental impacts. 
In this regard, in this paper, a new version of EMA, known 
as improved EMA is implemented to solve the DEED 
problem in the presence of PEVs, as an uncertainty 
sources in new power systems, with conflicting objectives 
of fuel cost and emission. This optimization technique 
was applied to three test cases. 

In the first test case, the Pareto front obtained by the 
proposed method had an acceptable diversity and spread, 
which shows the proper performance of applying the non-
dominated sorting and crowding distance. In the second 
and third test cases, PEVs were also considered, which 
converted the static EED problem into a dynamic one. In 
these test cases, the results of the proposed method 
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compared to state of the art methods, showed up to 48% 
reduction in emissions and up to 39% reduction in costs. 
From these results, it can be concluded that the proposed 
method can be a suitable candidate to solve the multi-
objective DEED problems by considering the practical 
constraints. In addition, a comparison of four scenarios 
EPRI, Off-Peak, Peak, and Stochastic, showed that 
shifting the charging time of EVs to non-peak hours 
reduces costs and emissions. 

Increasing the search ability of the algorithm by 
combining it with other optimization methods, and 
introducing some hybridizing optimization techniques, to 
apply it to multi-objective optimization problems of 
DEED with more practical constraints in a microgrid can 
be considered as future work in this field. Furthermore, 
considering a complete package of uncertainties in power 
systems, including the uncertainty of load, and renewable 
energy resources, can be mentioned as the most prominent 
topics for future researches. 

 
Fig. 7. Generated powers in test case 3 during 24 hours 

for Peak scenario. 

 
Fig. 8. Generated powers in test case 3 during 24 hours 

for Stochastic scenario. 
 

 
Fig. 9. Generated powers in test case 3 during 24 hours 

for Off-Peak scenario. 
 

 
Fig. 10. Generated powers in test case 3 during 24 hours 

for EPRI scenario. 
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