
                                                     

 

 

International Journal of Research and 

Technology in Electrical Industry 

journal homepage: ijrtei.sbu.ac.ir  

 

 

IJRTEI., 2022, Vol.1, No. 1, pp. 46-56 

 

 

 Multi-objective Dynamic Environmental Economic Dispatch Problem 

Considering Plug in Electric Vehicles by Using the Improved 

Exchange Market Algorithm 

 

Hossein Nourianfar1, Hamdi Abdi1,* 

1 Electrical Engineering Faculty, Razi University, Kermanshah, Iran 

 

 

ARTICLEINFO ABSTRACT 

Article history: 
Received 15 January 2022 
Received in revised form 28 March 2022 

Accepted 04 April 2022 

Global Warming and progression of modern power networks have profoundly 

changed traditional power grids in terms of fossil fuel consumption and emission 

of toxic gases. Therefore, auxiliary power plants and ancillary services have been 

introduced as an effective alternative, to overcome these new challenges in power 

systems. In this work, the dynamic environmental economic dispatch (DEED) 

problem, is investigated by considering the plug-in electric vehicles (PEVs), 

minimizing the fuel cost and greenhouse gas emissions from fossil fuel units. In 
the mentioned problem, to make it more practical, various operational constraints, 

including valve-point loading effect (VPLE), ramp rate limits (RRLs) and 

generation capacity limits are considered. This paper proposes a new multi-

objective exchange market algorithm (EMA) based on the non-dominated sorting 

theory to find the Pareto front. In addition, the impacts of PEVs, as an uncertainty 

source, on the mentioned problem are analysed in four different charging 

scenarios. The efficiency of the proposed method has been detailed on three 

experimental systems and the obtained results are compared with other algorithms 

in this field. The results show that the maximum percentage reduction in costs for 

test cases 1 to 3, are about 2.13, 2.69, and 39.48, respectively, and bout 45.96, 

48.20 and 44.07, for emission, respectively. The comparative analysis verify the 

proposed method efficiency, and accuracy in solving the suggested problem. 
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Nomenclature 

 

List of symbols 

𝐹𝐶𝑖(𝑃𝑖) Fuel cost function of the ith thermal unit 

𝐴𝑖 ،𝐵𝑖  and 𝐶𝑖 Coefficients of thermal unit cost function i. 

D  and θ  Coefficients of VPLE 

𝑃𝑖 Generated power by thermal unit i 

𝐸𝑖(𝑃𝑖) Emission function of the ith thermal unit 

α, β, γ, 𝜁 and  𝜆  Emission coefficients of thermal unit  
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𝑃𝑖,𝑡
𝑚𝑖𝑛  and 𝑃𝑖,𝑡

𝑚𝑎𝑥 
Minimum and maximum power generated 

by unit i at time t 

𝑃𝐷,𝑡 and 𝑃𝐿,𝑡 
Demand load and the power loses at time 

t. 

𝑙𝑒𝑣,𝑡  Charging load of PEVs, at time t 

𝑃𝑖
0 previous output power of the ith unit 

𝐷𝑅𝑖 and 𝑈𝑅𝑖  Down and up ramp rate limits of the ith unit 

𝐼𝑁𝐷1,𝑖
𝑔𝑟𝑜𝑢𝑝1

 and 

𝐼𝑁𝐷2,𝑖
𝑔𝑟𝑜𝑢𝑝1

 
Individuals in the first category 

mailto:hamdiabdi@razi.ac.ir


47                      Citation information: DOI 10.52547/ijrtei.1.1.46, International Journal of Research and Technology in Electrical Industry 

IJRTEI., 2022, Vol.1, No. 1, pp. 46-56 

 

R A random number in the range of 0 and 1 

𝛿𝑘 
Value of the change in the share of the k 

member in the third group 

𝑊𝑘 
Feedback coefficient of the k member in 

the third group 

𝑅𝑎𝑛𝑘𝑘 Rank of the k member in the third group 

𝑁𝑃𝑂𝑃 Number of total population 

∆𝑛𝑡1
𝑖  and ∆𝑛𝑡2

𝑖  
Amount of change in the variables of the 
members of the second and third groups 

𝛹𝑡
𝑖 Exchange market information 

𝜔1  Risk factor for each member of group 2 

μ 
Risk increase coefficient that makes the 
last individuals of the ranking take more 

risks 

𝑔1
𝑘and 𝑔2

𝑘 
common market risk for the second and 

third groups 

𝑖𝑡𝑒𝑟𝑚𝑎𝑥 Maximum iteration 

𝑔𝑚𝑖𝑛 and 𝑔𝑚𝑎𝑥 
Minimum and maximum common market 

risk 

𝑓𝑖(𝑥) and 𝑓𝑖(𝑦) 
Output of the ith objective function for 

solutions x and y 

𝐶𝐷𝑖 Crowding distance of the ith solution 

𝜑 Penalty coefficient 

Abbreviations 

DEED Dynamic Environmental Economic Dispatch 

PEVs Plug-in Electric Vehicles 

VPLE Valve-Point Loading Effect 

RRLs Ramp Rate Limits 

ELD Economic Load Dispatch 

EED Economic Emission Dispatch 

AI Artificial Intelligence 

DE Differential Evolution 
MCSA Modified Crow Search Algorithm 

Dy-NSBBO 
Dynamic Non-dominated Sorting 

Biogeography-Based Optimization 

NSGA-II Non-dominated Sorting Genetic Algorithm  

KKO Kho-Kho Optimization 

WOA Whale Optimization Algorithm 

COA Coyote Optimization Algorithm 

MSFLA Modified Shuffle Frog Leaping Algorithm 

ICA Imperialist Competitive Algorithm 

EPRI Electric Power Research Institute 

PDF Probability Distribution Function 

 

1. Introduction 

Power generation units play a significant role in the 

power system, to provide a reliable and safe electricity to 

consumers, in an economical and controllable manner. 

With the development of technology and industrialization, 

the need for electrical power is increasing gradually. On 

the other hand, meeting the increased power demand 

entails significant costs. Accordingly, reducing the power 

generation costs is remarkably involved in promoting the 

economic development of countries [1]. 

Supplying reliable energy at the minimum cost can be 
a very challenging subject that is highly dependent on grid 

operation and control strategies. So far, different 

operation concepts are considered to minimize the total 

cost of power generation units. In this regard, Economic 

load dispatch (ELD) is the most basic problem, as the 

cornerstone of operation studies, to provide the quality 

power to the customers, economically and safely. The 

ELD problem is defined as determining the optimal 

generations of power plants satisfying a set of different 

constraints, while minimizing total operating costs [2]. 

Mathematical methods cannot be used properly to 

address these problems due to the need for differentiable 

or continuous objective functions. Hence, various 

artificial intelligence (AI)-based optimization methods 

that randomly seek the optimal solutions are used 

effectively to solve the EED problem. As a result, these 

methods can be a suitable candidate. Some of these 
optimization techniques include Kho-Kho Optimization 

algorithm (KKO) [3], Whale Optimization Algorithm 

(WOA) [4], Coyote Optimization Algorithm (COA) [5], 

Modified Shuffle Frog Leaping Algorithm (MSFLA) [6], 

Modified Crow Search Algorithm (MCSA) [7], and 

Imperialist Competitive Algorithm (ICA) [8]. 

Integrating the environmental issues caused by 

produced emission gases from fossil fuel-based 

generators to the ELD problem, results in extending a 

single-objective problem to a multi-objective economic 

emission dispatch (EED) problem [9]. The EED problem 

is mentioned as a type of multi-objective problems with 
conflicting objectives. In other words, reducing the value 

of one-goal leads to increasing the value of another. 

Therefore, the appropriate solution must be obtained 

through an acceptable trade-off between different 

objectives. 

This new problem is more complex than the earlier 

one, which needs applying some new techniques to solve 

it. The purpose of this new problem is to minimize the fuel 

cost and emissions simultaneously, which has made it as 

one of the most important research topics, and directions 

in modern power system operation studies. Solving this 
complex problem considering practical system-operating 

constraints such as valve-point loading effect (VPLE), 

due to its very nonlinear and non-convex nature, is a very 

challenging problem that cannot be solved by using 

traditional and classical methods [10]. 

As the literature confirms, there are many researches 

focussed on this issue, some of them are addressed in 

following. 

One of the effective techniques to solve this problem 

is converting this two-objective problem to a single 

objective framework by using the classical optimization 
techniques. In this method the emission rate is considered 

as an operational constraint [11]. Depending on the 

problem model and solving strategy, this method has 

some complexities in finding a compromise solution 

among the fuel cost and emissions. 

Another method is addressed in [12], which applied 

the goal-based programming to solve the EED problem. 

However, this method needs more run-time to be 

converged. 

The classical optimization techniques are applied to 

solve the EED problem based on coordination equations 

that are not suitable for discontinuous cost functions. 
Therefore, in classical optimization methods, the cost 

curve must be estimated in proportion to the necessity of 

the problem. 

A popular strategy is to convert the multi-objective 

EED problem into a single-objective problem using the 

price penalty factor and then extract the Pareto Front by 

varying the values of weighted coefficients for cost and 

emission. The weighted coefficients method suffers from 
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two main drawbacks [13]. First, the uniform distribution 

of weighted coefficients does not always result in a 

uniform distribution of solutions. Second, the solutions 

existing on the non-convex portions of the Pareto front 

cannot be found using this method. 

In [14], the authors investigated various optimization 

problems in the field of operation of power systems, such 

as ELD, ELD in multi-area, ELD in the presence of 

combined heat and power (CHP) units, on the small- and 
large-scale cases and taking into account the effect of 

renewable energy resources. In this work, a modified 

version of the EMA is employed to solve the mentioned 

problems. In [15], the multi-objective EED problem is 

addressed using the combination emission with cost by 

the price penalty factor. In that research, a hybridization 

of adaptive inertia weight particle swarm optimization 

(PSO) and EMA, integrated with an effective constraint 

handling method is used for problem optimization. In [16], 

the bi-objective EED problem is solved by employing an 

improved bare-bone multi-objective PSO algorithm. In 

this algorithm, to extract the Pareto front and maintain the 
distribution diversity of Pareto-optimal solutions, the 

slope method and crowding distance are integrated in the 

algorithm. In addition, two operators’ pbest and gbest are 

improved to enhance the performance of the algorithm. In 

[17], to deal with conflicting objectives in the EED 

problem, the concept of non-dominated sorting is 

embedded in the squirrel search algorithm. In this work, 

the crowding distance mechanism along with an external 

depository is utilized to distribute the solutions well in the 

target space. 

On the other hand, the use of plug-in electric vehicles 
(PEVs) in recent years has received much attention due to 

their significant impacts on reducing emission and being 

a good option for storing electrical energy. Hence, many 

large automobile companies have turned to the production 

of these cars [18]. Increasing the number of EVs has 

caused the charging and discharging programs of these 

cars to be done in accordance with the load curve of the 

network. Therefore, it is always tried to direct the car 

charging mainly to non-peak times, and a portion of the 

stored energy in batteries of these cars is sold to the grid 

during peak hours. 
In [19], the economic unit commitment examines 

power systems integrated with renewable energy 

resources and PEVs, considering only the unit costs and 

regardless of emissions. In [20], an energy storage model 

with network vehicles is proposed for ELD in the smart 

grid. In this work, weighting coefficients are used to 

convert the two objectives optimization problem, 

including emission and cost objectives, into a single 

objective function. In [21], in addition to PEVs, the effect 

of wind turbines on the DEED problem is analysed. The 

solution approach used in this work is the multi-objective 

virus colony search, and the non-dominated sorting 
procedure is employed to extract the Pareto front. 

With the integration of PEVs in the power grid, the 

mentioned problem changes from optimal static power 

dispatch to dynamic ones. As a result, the complexity of 

the problem will be increased in the dynamic condition 

than in the static condition. 

So far, several methods have been proposed for 

solving the mentioned problem in dynamic condition, 

which, in general terms, they can be grouped into two 

major categories. The first category includes different 

classical methods based on mathematical equation used to 

solve the DEED problem, such as linear, quadratic 

programming and gradient methods [22, 23]. Most 

mathematical methods are based on iteration. Although 

these methods offer somewhat accurate solutions to the 

problem, they are faced with several limitations in real-

world problems, including the fact that the fuel cost curve 
of the units must be continuous. 

In addition, although this is not the case with dynamic 

programming methods and there is no limit to the 

continuity of the fuel cost curve, it will take a lot of time 

and memory to solve the problem if the number of units 

increases. 

Nevertheless, in intelligent algorithms, not only are 

they applicable to any problem without if the number of 

units any limitations, but also the time and dimensions 

required to solve the problem increase linearly with the 

number of units, making them a more suitable option for 

solving practical problems of ELD [21]. 
Among the algorithms used in recent researches to 

solve the DEED problem are the combination of multi-

objective crisscross optimization and differential 

evolution (DE) [24] constriction factor-based particle 

swarm optimization [25] and the self-adaptive parameter 

operator multi-objective differential evolution integrated 

with local search operator based on non-dominant sorting 

[26]. 

In this paper, an improved EMA is used to solve the 

dynamic environmental economic dispatch (DEED) 

problem considering PEVs. This meta-heuristic algorithm 
has two operators that generate intelligent random 

numbers and two operators that strongly and efficiently 

absorb random numbers towards optimal numbers, 

simultaneously. 

The main contributions of this paper are: improving 

the EMA, integrating the fast non-dominated sorting 

approach in the suggested method to find the pareto front 

of the problem, applying the addressed technique to the 

mentioned problem with modelling the PEVs, and 

evaluating the performance and effectiveness of the 

proposed method, by comparing the results obtained with 
the results of recent methods. 

The rest of the paper is organized as follow. The 

formula for the DEED problem and the mathematical 

model of PEV charging are shown in section 2. Section 3 

addresses the suggested technique in detail. The 

simulation results on different case studies are described 

in section 4. Finally, main conclusions and some 

suggestions for future works are stated in section 5. 
 

2. Problem Formulation 

In this section, the formulation of the EED problem is 

detailed. 
 

2.1. Fuel Cost Function  

The fuel cost function of thermal generation units is 

assumed to be a quadratic equation as [8]: 

𝐹𝐶𝑖(𝑃𝑖) = 𝐴𝑖 + 𝐵𝑖𝑃𝑖 + 𝐶𝑖𝑃𝑖
2                                   (1) 

𝐴𝑖  ($/h) ،𝐵𝑖  ($/MW/h) and 𝐶𝑖  ($/MW2/h) are the 

coefficients of thermal power plant cost function i. 
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2.2. The VPLE  

The fuel cost function considering the VPLE is 

modeled by adding a sine term to the objective function 

of Eq. (1) as [10]: 

𝐹𝐶𝑖(𝑃𝑖) = 𝐴𝑖 + 𝐵𝑖𝑃𝑖 + 𝐶𝑖𝑃𝑖
2

+ |𝐷 ∗ 𝑠𝑖𝑛  {𝜃( 𝑃𝑚𝑖𝑛 − 𝑃 )} | 
(2) 

Where D ($/h), and θ (rad/MW) are the coefficients of 

VPLE, and 𝑃𝑚𝑖𝑛  is the minimum generated power by 

thermal unit i. 

 
2.3. Emission Function 

The emission produced by each generation unit can be 

expressed in terms of generator output power as follow 

[9]: 

𝐸𝑖(𝑃𝑖) = 𝛼 + 𝛽𝑃𝑖 + 𝛾𝑃𝑖
2

+ 𝜁 𝑒𝑥𝑝(𝜆𝑃𝑖)        (
𝐾𝑔

ℎ
)   

(3) 

In which, α, β, γ, 𝜁 and  𝜆 are the emission coefficients. 

 

2.4. The DEED Formulation  

The DEED problem formulation is similar to the static 

ELD, except that in the dynamic condition, the problem is 
investigated within 24 hours, and constraints such as the 

ramp rate limits (RRLs) are added to the problem. The 

DEED problem can be expressed as: 

𝑚𝑖𝑛 {∑ ∑ 𝐸(𝑃𝑖)

𝑁𝑃

𝑖=1

24

𝑡=1

, ∑ ∑ 𝐹𝐶(𝑃𝑖)

𝑁𝑃

𝑖=1

24

𝑡=1

} (4) 

 

2.5. The Effect of PEVs  

Despite the advantages of EVs over conventional 

vehicles, one of the biggest challenges in using these 

vehicles is that if they are connected to the power grid 
suddenly during peak consumption, there is a possibility 

of network disruption and equipment damage. This is 

mainly due to the coincidence of the time of return of car 

owners to the place of residence at the end of office hours 

with the peak consumption to the place of residence time 

[21]. 

Severe fluctuations and sometimes sudden ascent in 

the load curve typically occur due to power consumption 

for home chargers and superchargers [21]. To prevent 

such disturbances in the power system, it is necessary to 

exercise appropriate control and coordination between car 

charging and the grid. Generally, four different strategies 
to charge the PEVs are addressed. These techniques are 

including EPRI forecasted load profile according to the 

PEVs driver behavior, stochastic charging, peak and off-

peak charging. 

According to EPRI, more than 60% of the power is 

consumed in seven hours, from 10 pm to 4 am. The Peak 

and Off-Peak profiles indicate the worst and best 

situations of vehicles charge, respectively. Finally, the 

stochastic profile based on the uncertainty of the charge 

of EVs is a daily casual charge distribution. In this 

scenario the probability distribution function (PDF) is 
considered with a normal distribution by mean value of 

0.05. Table I shows the PDF for charging EVs based on 

different scenarios. 

 

2.6. Maximum and Minimum Generation Capacity 

Limits 

Each generation units must be operated within a 

certain range, due to some technical and economic 

reasons. The upper limit of this range is the nominal value 

of the generator and the lower one is the value that is 

necessary for the boiler stable operation. 

𝑃𝑖,𝑡
𝑚𝑖𝑛 ≤ 𝑃𝑖,𝑡 ≤ 𝑃𝑖,𝑡

𝑚𝑎𝑥 (5) 

𝑃𝑖,𝑡
𝑚𝑖𝑛  and 𝑃𝑖,𝑡

𝑚𝑎𝑥  show the minimum and maximum 

generated powers by unit i at time t. 

 

2.7. Power Balance 

The sum of total power demand and power losses must 

be equal to the total power generated, as: 

∑ 𝑃𝑖,𝑡

𝑁𝑃

𝑖=1

= 𝑃𝐷,𝑡 + 𝑃𝐿,𝑡 + 𝑙𝑒𝑣,𝑡 (6) 

𝑃𝐷,𝑡  is the demand load, and 𝑃𝐿,𝑡  is the electrical 

power losses at time t. 𝑙𝑒𝑣,𝑡  represents the charging load 

of PEVs, at time t. The power losses is determined by 

using the B-matrix coefficient method. 

 

Table I. Charging scenarios of electric vehicles. 

Charging 

Scenario 

Time 

01:00-

06:00 

07:00-

12:00 

13:00-

18:00 

19:00-

24:00 

P
ro

b
ab

il
it

y
 D

is
tr

ib
u

ti
o

n
 

EPRI 

0.100 0.010 0.021 0.016 

0.100 0.003 0.021 0.036 

0.095 0.003 0.021 0.054 

0.070 0.013 0.001 0.095 

0.050 0.021 0.005 0.100 

0.030 0.021 0.005 0.100 

Off-Peak 

0.185 0 0 0 

0.185 0 0 0 

0.090 0 0 0 

0.090 0 0 0 

0.040 0 0 0.185 

0.040 0 0 0.185 

Peak 

0 0 0.185 0.040 

0 0 0.185 0.040 

0 0 0.185 0 

0 0 0.185 0 

0 0 0.090 0 

0 0 0.090 0 

Stochastic 

0.057 0.087 0.038 0.028 

0.049 0.048 0.02 0.022 

0.048 0.011 0.021 0.055 

0.024 0.032 0.061 0.025 

0.026 0.021 0.032 0.035 

0.097 0.057 0.022 0.082 
 

2.8. Ramp Rate Limits  

The RRLs are the dynamic constraints, in terms of 

mechanical constraints and in the form of increasing or 

decreasing rates the output power. By considering this 

subject, the static EED problem is converted into a 

dynamic EED problem that prevents possible damage to 
the rotor. These RRLs are expressed as: 
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𝑀𝑎𝑥(𝑃𝑖
𝑚𝑖𝑛 , 𝑃𝑖

0 − 𝐷𝑅𝑖)  ≤  𝑃𝑖  

≤ 𝑀𝑖𝑛(𝑃𝑖
𝑚𝑎𝑥 , 𝑃𝑖

0 + 𝑈𝑅𝑖) 
(7) 

In which, 𝑃𝑖
0 (MW) is the previous output power of the 

ith unit, and 𝐷𝑅𝑖 (MW/h), and 𝑈𝑅𝑖 (MW/h) are the down 

and up ramp rate limits of the ith unit, respectively. 

 
3. Proposed Approach 

The approach used in this work, consists of three 

general components: 

I. Employing the improved EMA 

II. Non-dominated sorting procedure and crowding 

distance calculations 

III. Constraint handling 

The main component of this approach is to use the 

improved EMA to optimize the intended problem. How 

this algorithm works is described in detail in Section 3.2. 

Nevertheless, since this algorithm is designed to address 

single-objective optimization problems, a mechanism is 
needed to find the Pareto front. For this purpose, non-

dominated sorting and crowding distance are embedded 

in the algorithm. 
 

3.1. Improved EMA 

In this algorithm, there are two different market modes 

in each iteration, and after each mode, the viability is 

examined and individuals are sorted based on the value of 

their assets [28]. At the end of each market situation, the 

primary, middle, and final members of the population are 

known as members of groups one, two, and three. How to 

trade stocks in different market conditions and in different 
groups is as follows: 

 Normal Mode 

After producing the initial population and calculating 

the value of individuals' stocks, in normal mode, 

individuals are divided into three categories based on the 

amount of assets and the value of their stocks. 

Then the first category, which includes individuals 

with the highest stock value, makes no effort to change 

their stock because of their position. [27]. 

However, individuals who are in the second category, 

change their shares according to the experience of the first 

category to reach the position of individuals in the first 

category and increase the value of their shares. The 

method of changing the shares of these individuals is as 
[28]: 

𝐼𝑁𝐷𝑗
𝑔𝑟𝑜𝑢𝑝2

= 𝑅 × 𝐼𝑁𝐷1,𝑖
𝑔𝑟𝑜𝑢𝑝1

+ (1 − 𝑅)

× 𝐼𝑁𝐷2,𝑖
𝑔𝑟𝑜𝑢𝑝1

 
(8) 

𝐼𝑁𝐷1,𝑖
𝑔𝑟𝑜𝑢𝑝1

 and 𝐼𝑁𝐷2,𝑖
𝑔𝑟𝑜𝑢𝑝1

 are the individuals in the 

first category. R is a random number in the range of (0,1). 

In the third category, individuals change their stocks 

at greater risk than those in the second category because 

of the much lower stock value than those in the first 

category, as: [28]: 

 𝛿𝑘 = 2 × 𝑊𝑘 × (𝐼𝑁𝐷1,𝑖
𝑔𝑟𝑜𝑢𝑝1

− 𝐼𝑁𝐷𝑘
𝑔𝑟𝑜𝑢𝑝3

)   (9) 

𝐼𝑁𝐷𝑘
𝑔𝑟𝑜𝑢𝑝3,𝑛𝑒𝑤

= 𝐼𝑁𝐷𝑘
𝑔𝑟𝑜𝑢𝑝3

+ 𝛿𝑘 (10) 

𝑊𝑘 = 2 ×
(𝑅𝑎𝑛𝑘𝑘 − 𝑁𝑃𝑂𝑃 2⁄ )

𝑁𝑃𝑂𝑃
⁄  (11) 

𝛿𝑘  is the value of the change in the share of the k 

member in the third group. 

• Oscillation Mode 

Similar to normal mode, the individuals are divided 

into 3 groups and the members of first group try to 

maintain their rank and remained unchanged. However, in 

the second group, the total shares of individuals is fixed 

and only the amount of some shares of each type increases 

and the amount of others decreases, so the total amount of 

shares of each individual remains unchanged. Initially, the 

number of shares of each individual increases according 

to [28]:  

∆𝑛𝑡1
𝑖 = 𝑛𝑡1

𝑖 − 𝛹𝑡
𝑖 + (2 × 𝑅 × 𝜇 × 𝜔1) (12) 

𝜇 = 𝑡𝑃𝑂𝑃 𝑁𝑃𝑂𝑃⁄  (13) 

𝑛𝑡1
𝑖 = ∑ |𝑆𝑡𝑦|

𝑛

𝑦=1

 (14) 

𝜔1 = 𝑛𝑡1
𝑖 × 𝑔1

𝑘 (15) 

𝑔1
𝑘 = 𝑔1,𝑚𝑎𝑥 −

𝑔1,𝑚𝑎𝑥 − 𝑔1,𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥

× 𝑘 (16) 

𝛹𝑡
𝑖 = 𝜙𝑖 + 𝜃𝑡

𝑖(𝑥) (17) 

∆𝑛𝑡1
𝑖  is the amount of change in the variables of the 

members of the second group and 𝛹𝑡
𝑖  is the exchange 

market information. R is a random number, 𝜔1 is the risk 
factor for each member of group 2. μ is the risk increase 

coefficient that makes the last individuals of the ranking 

take more risks. 𝑔1
𝑘is a common market risk and decreases 

with increasing the iteration. 

In the second part of this section, it is necessary for 

each individual to sell some of his stocks of any kind at 

random in the same amount as he bought additional stocks, 
so that the total stocks of each individual remain 

unchanged. In this part, it is necessary for each individual 

to reduce his stocks by a total of ∆𝑛𝑡2
𝑖 . In this case, the 

value of each individual is equal to: 

∆𝑛𝑡2
𝑖 = 𝑛𝑡2

𝑖 − 𝛹𝑡
𝑖 (18) 

∆𝑛𝑡2
𝑖  is the amount of stock that each individual must 

sell. 

In this section, unlike group two, the total number of 

stock of individuals changes with trading and each 

member buys or sells some shares. The shareholders of 

the third group change some of their stock according to 

the following relation [28]: 

∆𝑛𝑡3 = (4 × 𝑟𝑠 × 𝜇 × 𝜔2) (19) 

𝑟𝑠 = (0.5 − 𝑟𝑎𝑛𝑑) (20) 

𝜔2 = 𝑛𝑡1 × 𝑔2 (21) 
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𝑔2
𝑘 = 𝑔2,𝑚𝑎𝑥 −

𝑔2,𝑚𝑎𝑥 − 𝑔2,𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥

× 𝑘 (22) 

∆𝑛𝑡3 is the amount of change in the variables of the 

members of the third group. rand is a random number, 𝜔2  

is the risk factor for each member of group 2. μ is the risk 

increase coefficient that makes the last members in the 

ranking take more risks. Finally, 𝑔2
𝑘 is the usual market 

risk for the third group in the oscillation mode and 

decreases with increasing iteration. The flowchart of the 

proposed approach is drawn in Figure 1. 

Start
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range of inequality constraints
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No

NORMAL 
MODE

OSCILLATION
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Fig. 1. The flowchart of the proposed approach 

 

3.2. Non-Dominated Sorting Procedure and Crowding 

Distance Calculations 

In the multi-objective EED problem, the aim is to 

reduce both costs and emissions. Therefore, solutions 

cannot be sorted on the basis of less cost alone. In these 

cases, the concept of dominance is used. One solution 

dominates another, if the following equations are met 

simultaneously [29]. 

𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑦)       ∀𝑖 = 1, 2, … , 𝑛 (23) 

𝑓𝑖(𝑥) < 𝑓𝑖(𝑦)       ∃𝑖 = 1, 2, … , 𝑛 (24) 

Where, 𝑓𝑖(𝑥)  and 𝑓𝑖(𝑦) are the output of the ith 

objective function for solutions x and y, respectively. In 

addition, n represents the number of objectives. In the 

non-dominated sorting procedure, the solutions that are 

not dominated by any other solution form the first front. 

Regardless of the available solutions in the first front, the 

same procedure is repeated, and the non-dominated 

solutions form the second front, and so on. In addition, to 
maintain diversity, in each front, the crowding distance of 

the solutions is calculated according to the following 

equation [10]. 

𝐶𝐷𝑖 =
1

𝑛
∑|𝑓𝑖+1

𝑜 − 𝑓𝑖−1
𝑜 |

𝑛

𝑜=1

 (25) 

Where 𝐶𝐷𝑖 is the crowding distance of the ith solution 

in that front, n is the number of objectives, and 𝑓𝑖+1
𝑜  and 

𝑓𝑖−1
𝑜  represent the output of the oth objective function for 

solutions i+1 and i-1, respectively. 

First, the solutions are ranked based on the front which 
they are on it (solutions on the first front are better than 

solutions on the second front, and so on). Then, solutions 

on the same front are ranked based on the greater 

crowding distance. Table II shows a comparison between 

the features of the proposed modeling and solution 

approach. 

 

Table II. Comparison between the features of the DEED 

problem and the proposed method. 

Proposed method DEED problem 

Individual Solution 

Shares Power output of units 

Total shares Total power 

Information of 

exchange market 

Problem data (e.g. power 

balance) 

Buying/selling shares 
Increasing/decreasing power 

outputs of units 

Number of 
shareholders 

Population (the number of 
solutions) 

Sorting based on the 

value of Assets or 

stocks 

Sorting based on front and 

crowding distance 

 

3.3. Constraint Handling 

Two steps are taken to satisfy inequality constraints 

such as generation capacity limits. In the first step, it tries 

to generate power within the acceptable range; in the 

second step, whenever it is violated, the power is 

corrected to the nearest margin of the feasible solution. 

Two actions are taken for equality constraints. In the first 
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one, the penalty function with a small value for the penalty 

coefficient is considered. The following equation shows 

the new fuel cost function by applying the penalty 

function. 

𝐹𝐶𝑛𝑒𝑤 = 𝐹𝐶𝑜𝑙𝑑 + 𝜑 × |∑ 𝑃𝑖
𝑁𝑃
𝑖=1 − 𝑃𝐷 −

𝑃𝐿 − 𝑙𝑒𝑣|  
(26) 

Where, 𝜑  is the penalty coefficient, its value is 

considered small here, and 𝐹𝐶𝑜𝑙𝑑 is the fuel cost function 
before applying the penalty function. On the one hand, a 

small value cannot guarantee the exact fulfilment of the 

constraint; on the other hand, a large value for the penalty 

coefficient can lead to premature convergence. Hence, in 

the second action, to accurately satisfy the constraint, an 

intelligent search is performed during the algorithm 

optimization process according to Equations (12-17). In 

this way, it is tried that the total shares of individuals are 

always in such a way that the equality constraints are met. 
 

4. Simulation 
To confirm the effectiveness of the proposed 

algorithm in solving bi-objective DEED problems, three 

test systems including 6-unit static and dynamic systems, 

and 10-unit dynamic system with four electric vehicle-

charging scenarios are used. The parameter settings of the 

proposed algorithm for solving each of the test systems 

are presented in Table III. 
 

4.1. Test case I 

In the first case, a simple test system without PEV is 

used to test the effectiveness of the proposed algorithm on 

a 6-unit test system. Load demand is set to PD=500 MW 
and other coefficients of generation units are selected 

based on [18]. 

The Pareto front obtained by the proposed method for 

this test system is shown in Figure. 2. As can be seen from 

this figure, the proposed method can obtain extreme 

solutions (minimum cost and minimum emission) well, 

and although the solutions do not have a uniform 

distribution, due to the low run-time and high accuracy of 

the outputs, the diversity of solutions is acceptable. 

In addition, the best-compromised solution obtained 

by the proposed method is compared with the results of 

other methods in this field in Table IV. 
As can be seen, the results of the proposed method are 

better than the other methods in terms of fuel cost and 

emission. In addition, the proposed method, unlike the 

other two methods, despite the losses, satisfies the power 

balance well. 

 

Table II. Settings of algorithm parameters to solve 

different test cases. 

Parameters 
Test Case 

1 

Test Case 

2 

Test Case 

3 

Maximum 

Iteration 
100 100 100 

Population 50 50 100 

g1 [max, 
min] 

[0.005, 
0.0005] 

[0.01, 
0.05] 

[0.01, 
0.05] 

g2 [max, 

min] 

[0.01, 

0.001] 

[0.02, 

0.005] 

[0.02, 

0.005] 

 

 
Fig. 2. Pareto front obtained by the proposed method 

for the test case 1. 

 

Table III. Comparison of results for test case 1. 

Method 

Dy-

NSBBO 

[18] 

Dy-

NSGA-II 

[18] 

Proposed 

method 

P1 173.11 165.87 125.047 

P2 149.52 158.13 130.376 

P3 65.36 78.78 51.295 

P4 47.41 55.44 60.097 

P5 30.07 22.61 106.949 

P6 34.51 19.23 81.591 

Cost 34141.32 34214.25 33484.34 

Emission 709.26 711.32 384.357 
 

4.2. Test case 2 

In this case, the same 6-unit test system with PEVs is 

employed to examine the proposed algorithm 

performance. The four PEV charging scenarios described 

in the previous section are applied. As the amount of 

charge changes over time, the problem will change to 

DEED. 

In this case, it is assumed that there are some EVs, 
18000 of low-hybrid vehicles equipped with 15 kWh 

batteries, 10000 of medium-sized hybrid vehicles with 25 

kWh batteries, and 12000 of pure electric vehicles 

equipped with 40 kWh [21]. As a result, the total charge 

of PEVs for one day will be 1000MWh. This amount of 

charge is significant for the current network. 

Figures 3 to 6 show the cost and emission for 4 

different charging scenarios of EVs during 24 hours, 

respectively. 

As can be seen from these figures, the best case is 

related to the Off-Peak scenario, in which the vehicles 

charging time is shifted to non-peak hours. Figure 3 
shows that in the EPRI scenario, costs and emissions are 

almost the same at all day-hours, due to the almost 

uniform distribution of PEVs charges during the day, and 

figure 5 shows that costs and emissions peaked during 

peak hours. In the stochastic scenario, due to the fact that 

the amount of charge per hour is random, the cost and 

emission increase or decrease irregularly, at any day-hour. 
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The total cost and emission obtained by the proposed 

method for different scenarios is compared with the 

results of other methods in Table V. 

 

Table IV. Total cost and emission for the test case 2. 

Method EPRI 
Off-

Peak 
Peak 

Stochas

tic 

Dy-

NSBB
O [18] 

Total 

Cost 

83650

9 

8352

11 

8526

66 
849959 

Total 
Emissi

on 

18327 
1825

0 
1839

5 
18338 

Dy-

NSGA

-II [18] 

Total 

Cost 

85241

9 

8511

00 

8694

07 
858470 

Total 

Emissi

on 

18542 
1842

5 

1877

2 
18669 

Propos

ed 

metho

d 

Total 

Cost 

84013

0 

8451

52 

8459

83 
844670 

Total 

Emissi

on 

13374

.7 

9768.

6 

9722.

4 
9940.3 

 

Table V shows that for both peak and stochastic 

scenarios, the results of the proposed method are better 
than the results of the other two methods, in terms of both 

cost and emission. In other words, for these two scenarios, 

the results of the proposed method dominate the results of 

the other two methods. In addition, for the other two 

scenarios, the results of the proposed method dominate 

the results of the Dy-NSGA-II method. 

It should be noted that in the case of the Dy-NSBBO 

method, for both EPRI and Off-Peak scenarios, we cannot 

speak with confidence about the superiority between the 

methods. Because the Dy-NSBBO costs less, while its 

emission is higher than the proposed method. 

The total cost of the EPRI scenario is lower than the 
Off-Peak scenario. This is due to the fact that load demand 

used in the test system is considered the same at all hours. 

As a result, since the vehicles is charged more uniformly 

in the EPRI scenario, the total cost will be lower. 

 

 
Fig. 3. The cost and emission for test case 2, in EPRI 

scenario. 

 

 
Fig. 4. The cost and emission of test case 2, in Off-Peak 

scenario. 

 

4.3. Test Case 3 

The third test system is a 10-unit system that takes into 

account the practical system constraints, including the 

VPLE, RRLs, losses and generation capacity limits, in the 

form of DEED over 24 hours. The demand load in this 

system is 900 MW and the system data are extracted from 
[18]. 

Since the complexity and scale of this test system is 

greater than the previous system, it is more appropriate to 

evaluate the performance of the proposed method. 

The best compromising solutions for 24 hours in four 

different scenarios are given in Figures 7 to 10. Also, the 

total cost and emission of the proposed method compared 

to other methods are presented in Table VI. 
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Fig. 5.The cost and emission for test case 2, in Peak 

scenario. 

 

 
Fig. 6. The cost and emission for test case 2, in 

Stochastic scenario. 
 

The proposed method for all scenarios is less costly 

and less emission than the other two methods. In other 

words, the results of the proposed method dominate the 

results of the other two methods for all four scenarios. 

Furthermore, with the increasing problem scale, the 

superiority of the proposed method over the other two 

methods is more clearly demonstrated.  
The percentage improvement in cost and emission for 

all three test cases and for different scenarios is shown in 

Table VII. As can be seen from this table, the costs and 

emissions obtained by the proposed method have been 
significantly improved, especially concerning emissions. 

The results in Table VII confirm the reduction up to 39% 

in costs and up to 48% in emissions. 

Table V. Total cost and emission for the test case 3. 

method EPRI 
Off-

Peak 
Peak 

Stocha

stic 

Dy-

NSBB

O [18] 

Total 

Cost 

20617

38 

20613

30 

20673

07 

206280

6 

Total 

Emissi

on 

15348

3 

15332

1 

15417

8 
153778 

Dy-

NSGA

-II 

[18] 

Total 

Cost 

20692

98 

20654

76 

20734

24 

207301

7 

Total 

Emissi

on 

15544

3 

15468

5 

15593

2 
155801 

Propos

ed 

metho

d 

Total 

Cost 

14484

53 

14564

37 

14563

29 

144960

8 

Total 

Emissi
on 

92851 88506 87198 93063 

 

Table VII. The percentage improvement in cost and 

emission for all 3 test cases. 

Scenario Method 

Percentage 

improvement 

Cost 

(%) 

Emission 

(%) 

Test 

case 1 
- 

Dy-NSBBO 1.92 45.80 

Dy-NSGA-II 2.13 45.96 

Test 

case 

2 

EPRI 
Dy-NSBBO -0.43 1 27.02 

Dy-NSGA-II 1.44 27.86 

Off-Peak 
Dy-NSBBO -1.19 46.47 

Dy-NSGA-II 0.69 46.98 

Peak 
Dy-NSBBO 0.78 47.14 

Dy-NSGA-II 2.69 48.20 

Stochastic 
Dy-NSBBO 0.62 45.79 

Dy-NSGA-II 1.60 46.75 

Test 

case 

3 

EPRI 
Dy-NSBBO 29.74 39.50 

Dy-NSGA-II 30.00 40.26 

Off-Peak 
Dy-NSBBO 29.34 42.27 

Dy-NSGA-II 39.48 42.78 

Peak 
Dy-NSBBO 29.55 43.44 

Dy-NSGA-II 29.76 44.07 

Stochastic 
Dy-NSBBO 29.72 39.48 

Dy-NSGA-II 30.07 40.26 
1 A minus sign means higher cost of the proposed method 

 

5. Conclusion 

Investigating different power system operation studies 

in modern power systems is an important task, which 

should be discussed, especially by considering some new 

concepts such as uncertainty, and environmental impacts. 

In this regard, in this paper, a new version of EMA, known 
as improved EMA is implemented to solve the DEED 

problem in the presence of PEVs, as an uncertainty 

sources in new power systems, with conflicting objectives 

of fuel cost and emission. This optimization technique 

was applied to three test cases. 

In the first test case, the Pareto front obtained by the 

proposed method had an acceptable diversity and spread, 

which shows the proper performance of applying the non-

dominated sorting and crowding distance. In the second 

and third test cases, PEVs were also considered, which 

converted the static EED problem into a dynamic one. In 

these test cases, the results of the proposed method 
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compared to state of the art methods, showed up to 48% 

reduction in emissions and up to 39% reduction in costs. 

From these results, it can be concluded that the proposed 

method can be a suitable candidate to solve the multi-

objective DEED problems by considering the practical 

constraints. In addition, a comparison of four scenarios 

EPRI, Off-Peak, Peak, and Stochastic, showed that 

shifting the charging time of EVs to non-peak hours 

reduces costs and emissions. 
Increasing the search ability of the algorithm by 

combining it with other optimization methods, and 

introducing some hybridizing optimization techniques, to 

apply it to multi-objective optimization problems of 

DEED with more practical constraints in a microgrid can 

be considered as future work in this field. Furthermore, 

considering a complete package of uncertainties in power 

systems, including the uncertainty of load, and renewable 

energy resources, can be mentioned as the most prominent 

topics for future researches. 

 
Fig. 7. Generated powers in test case 3 during 24 hours 

for Peak scenario. 

 
Fig. 8. Generated powers in test case 3 during 24 hours 

for Stochastic scenario. 
 

 
Fig. 9. Generated powers in test case 3 during 24 hours 

for Off-Peak scenario. 

 

 
Fig. 10. Generated powers in test case 3 during 24 hours 

for EPRI scenario. 
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