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The use of Demand-Side Management (DSM) to increase the reliability of 

composite power systems at hierarchical level II (HLII) with Electric Vehicles 

(EVs) is an important issue that has not been studied so far. Studies that have been 

conducted assumed that EVs are connected to the power system during the mid-

peak load and peak load in two charge levels with uncertainty in influence and  

three load shifting levels (85%, 90%, and 95%). The reliability indices Loss of 
Load Expectation (LOLP), Expected Energy Not Supplied (EENS), Expected 

Health Duration (EHDUR), and Expected Margin Duration (EMDUR) are 

calculated. The present paper uses Monte Carlo Simulation (MCS) in modeling 

the uncertainty in the generation and transmission capacity of the power system 

and the influence of EVs. The modeling was performed on IEEE-RBTS standard 

system using the MATLAB software. The result indicates that more penetration of 

EVs will lead to higher load levels, and thereby LOLP and EENS indices will 

change much more, a trend that increases even more when EVs are charged during 

peak load. It is possible to increase EHDUR and EMDUR values by increasing 

load-shifting levels (95% to 90% and 85%). 
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Nomenclature 

 

Random number in range (0, 1) 𝑈 

Probability of system health 𝑃ℎ 

Probability of system margin 𝑃𝑚 

Probability of system risk 𝑃𝑟 

Duration of the ith healthy states (hours) Thi 

Duration for the ith marginal states (hours) Tmi 

Duration for the ith risk states (hours) Tri 

Total simulation time (hours) T, Tx 

The length of the program period is based on the year m 

Frequency of health (occurrences/year) 𝐹(ℎ) 
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Frequency of marginal (occurrences/year) 𝐹(𝑚) 

Frequency of risk (occurrences/year) 𝐹(𝑟) 

Total number of healthy states 𝑛(ℎ) 

Total number of marginal states 𝑛(𝑚) 

Total number of risk states 𝑛(𝑟) 

Total number of simulated (year) 𝑁 

Subscripts 

Availability A 

Greek 

Expected failure rate λ 
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Expected repair rate µ 

Abbreviations 

Forced Outage Rate 𝐹𝑂𝑅 

Time To Failure TTF 

Time To Repair TTR 

Loss of Load Probability LOLP 

Expected Energy Not Supplied (mwh/year) EENS 

Expected Health Duration (hours/occurrences) EHDUR 

Expected Margin Duration EMDUR 

 

1. Introduction 

Global environmental concerns, the decline in fossil 

fuels, and the consequent rise in fuel prices have led to an 

ever-increasing demand for electric energy. At the same 

time, electric power generation and transportation sectors 

are some but directly linked with 21st-century issues like 

maximum oil production, climate change, and energy 

independence. Currently, the facilities to build up 

transportation and greater electric power generation use 

more than 60% of the world's primary energies [1]. As a 

result, there is a growing interest in technologies such as 

EVs that can replace combustion fuel cars. These 

technologies help reduce dependence on petroleum 

products and the emission of greenhouse gases [2]. 

Electric transportation is considered a good alternative as 

it can considerably reduce the need for petroleum 

products and facilitate the use of renewable energies [2]. 

In recent decades, electric transportation systems such as 

electric trains have developed significantly and can be 

considered the primary infrastructure in the field of 

transportation in the future.  

With the growing popularity of EVs, there is a severe 

challenge to the stability of the power system, as large 

volumes of mobile consumers across the grid cause 

imbalances [3]. Increasing the availability of electric 

machines and lack of proper energy management can lead 

to instability of the power system [4]. In order to study the 

reliability and suitability of the grid, it is necessary to 

recognize the behavior of EVs owners and appropriate 

management methods for these vehicles. Many 

researchers and methods have tried to find ways to 

mitigate these undesirable. 

 

1.1.  Background of the Research 

In general, various studies and methods have been 

proposed to reduce the adverse effects of EVs on different 

loads. For example: 

To predict the expected daily power for the 

uncoordinated charging power demand of an EV, a 

stochastic process has been utilized in [5]. Different 

charging time distributions and departure time as another 

random variable are considered in the model presented to 

manage the autonomous Demand Response (DR) 

technique to control the EV charging demand. In  

 The effect of integration of EVs on DR programs 

considering classifications types of customers with an 

emphasis on invaluable services that EVs can provide in 

smart grid assets is scrutinized in [6].  

An optimal power dispatch problem on a 24-hours 

basis for distribution systems incorporated with directly 

controlled shiftable loads and renewable energy resources 

has been introduced. The number of optimization 

variables has been reduced using the optimization 

approach presented in [7].  

The economic impacts of the vehicle to grid regulation 

reserves considering the restrictions arising from 

unpredictable mobility by vehicle users is analyzed 

through an actual case study in which a dynamic approach 

reveals a significant improvement compared with static 

ones is presented in [8].  

A stochastic scheduling approach is proposed for many 

EVs parked in an intelligent parking lot is introduced in 

[9]. A self-scheduling model for an intelligent parking lot 

equipped solar systems and distributed generation through 

which practical constraints, solar radiation uncertainty, 

spinning reserve requirements, and EVs owner 

satisfaction are considered.  

To coordinate the charging and discharging of EVs 

considering the frequency deviation signal to deal with the 

uncertainty of renewable energy generations, a dynamic 

demand control has been proposed in [10] leads to 

distinguishing characteristics such as simplicity, 

efficiency, robustness, and readiness for practical 

applications.  

In [11], DSM of Plug-in Hybrid EVs (PHEVs) will 

become necessary to reduce peak loads as the penetration 

of PHEVs becomes greater. Trying to flatten the power-

demand curve at transformers will avoid overloading and 

defer investment. 

 To control the risk management and participation 

planning of EVs in the smart grid at high penetration level 

of renewable energy resources, a stochastic model is 

introduced from the Independent System Operator's 

perspective in a away that cover all uncertainties caused 

by renewables, load patterns, parking patterns, and 

transmission lines' reliability [12].  

In [13] has developed a model to create coordination 

between various PHEVs charging and discharging to 

reduce the electricity consumption peak and valley. In 

addition, the PHEVs owners earn economic profit in the 

grid through the demand peak and valley reduction. A DR 

scenario is presented as a corrective action following a 

contingency to maintain the power system within its limits 

during the urgent condition.  

To quantify the reliability performance under different 

scenarios considering the influence of information and 

communication technology as well as automatic control 

scenarios, Sequential MCS are employed [14]. 

 

1.2. Classification of Power Systems for Evaluating 

Reliability 

Modern electric systems are characterized by a vast 

and complex set of units from generation to individual 

consumers. Therefore, digital software and hardware are 

not entirely sufficient for the job of accurate and inclusive 

reliability evaluation of the grids. The power system parts 

are classified into three categories of generation, 

transmission, and transmission, based on their 
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performance and reliability. This classification can be 

integrated to form hierarchical levels for reliability 

analysis [15]. 

The first hierarchical level (HLI) involves the 

assessment of reliability at the level of generation units 

and the ability of these generation units to satisfy local 

loads. 

Reliability evaluation of Hierarchical Level II (HLII), 

includes generation units as well as a transmission 

network. Reliability evaluation of composite power 

systems is, in fact, the analysis of the capability to 

transmit electrical energy to consumers or main load 

points. Reliability evaluation of the third hierarchical 

level includes generation, transmission network, and 

distribution systems, and it considers the system's ability 

to provide energy for all consumers. Given the 

compartmentalization of the power system, reliability 

indices vary at different levels. Therefore, the present 

study focuses on the reliability indices of HLII. 

DSM strategy can be considered a practical solution to 

increase the reliability of the power system in the presence 

of EVs [16]. Therefore, DSM can increase the reliability 

of the power system without expanding it, which helps 

improve the presence of EVs while maintaining reliability 

indices. 

 

1.3. DSM plans 

The DSM includes two mutually effective plans: 

Energy efficiency and DR [17]. Energy efficiency or 

management analyzes daily or seasonal energy 

consumption and reformats it into an optimal 

consumption scheme. DR refers to a set of practices that 

consumers follow in reforming consumption models, 

enhancing network reliability for greater productivity of 

facilities, boosting economics of investments, and 

removing energy limits. These practices help control 

costs, especially during peak load periods [17]. Various 

methods of remodeling load in DR are presented in Fig.1. 

[18]. 

 
Fig.1. Different methods to change the load curve and 

shape in the DR program [18]. 
 

DR by load shifting technique is a widely used in DSM 

[19]. The extent DR using the load shifting technique 

influences reliability indices of the power system is 

excellent and depends on the shift amount from peak load 

during low load periods. Therefore, shifting load was 

performed at different levels, and resulting indices were 

used to analyze the model [20]. One of these indices is the 

application of the indices of system well-being criteria 

incorporating deterministic criteria in the probabilistic 

framework. These indices can integrate deterministic 

criteria in probability calculations to determine the system 

behavior [21]. Well-being analysis can also be considered 

in establishing the definite or probable criteria for 

determining the reserve required by power systems [21]. 

The present paper uses DR (concerning probable state 

programs for initiatives) at three levels to investigate the 

impact of the presence of EVs at three levels of 85%, 90%, 

and 95%, despite the uncertainty. The behavior of the 

power system in the selected model was evaluated using 

well-being analysis and indices as basic indices in 

assessing the reliability of the power system.  
 

1.4. Innovation and Novelty 

In general, during the reliability evolution of 

composite power system, it is necessary to understand 

calculated indices, which make the problem more 

complex [22] In this situation, system adequacy 

assessment is used to evaluate the considered indices. To 

gain the probability of lacking the system adequacy in the 

complex power system, each system's power flow 

analysis is performed considers the load model defined for 

that network. The load modeling can be done in three 

different ways: constant current, constant power, and 

constant impedance loads. load changes over time and 

each specific amount of load is valid just for an instant. 

Therefore, the AC power flow analysis is conducted for 

loads and generators for a short period. As a result, the 

main purpose of the AC power flow is to determine the 

steady state condition of bus voltages considering the 

constant power load model as the worst-case scenario 

considered in this paper. 

Overall, in the present study, the applicability of DSM 

for enhancing the productivity of the facilities and 

enhancing the reliability of a hybrid power system, 

including generation, transmission lines, and loads in the 

presence of EVs, is evaluated using the MCS method and 

in correspondence to their uncertainty. It is assumed: 

The probabilistic situations created by MCS for load, 

generation, and transmission lines for 1000 years of the 

study (due to the enormity of the calculations) are equal 

to 36 matrices representing 36 different modes of 

penetration of EVs. Each matrix includes the number of 

hours (8736000 rows) and 25 columns (the symbols of 

probabilistic loads, generation, transmission lines). 

That EVs are connected to the power system during the 

critical and influential mid-peak load and peak load in two 

charging levels with uncertainty in influence and three 

load shifting levels (85%, 90%, and 95%).  

Considering the voltage of busbars as a critical 

criterion to determine the level of a load shift. (A voltage 

range of 0.97-1.05V is chosen for the present study. In 

case voltages fall outside this range after the power flow, 

reactive power can be injected to put voltages within the 

predetermined limits. Thus, these cases in the evaluation 

of the variables can be considered as non-problematic 

situations.) 
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Employing well-being for the reliability evolution of 

the power system. 

An AC power flow is selected to better evaluate the 

research variables, including LOLP, EENS, EHDUR, and 

EMDUR, so that the effects of the transmission lines on 

the precise evaluation of variables can be analyzed. 

This is the case because when the loading level of 

power transmission lines is considered the loading 

criteria, the DC power flow is enough. But, while the 

busbar voltage value is also considered, the AC power 

flow should be used [23].  

Because the AC power flow helps determine the 

effects of transmission lines on the provision of load and 

thus a better evaluation of the variables. 

DR programs are generally divided into two types (i.e., 

price-based DR and incentive-based DR). In this paper, 

DR is considered motivational which is determined by 

companies and governments. 

  

2. Proposed Methods 

2.1. Simulation Flowchart  

In this paper, MCS was applied to simulate different 

states of power system with uncertainty in generation 

capacity and in transmission and also well-being model 

was applied to evaluate different states of operation of the 

system in HLII level with penetration of EVs (shown in 

Fig.4. MCS is a probabilistic method with approximate 

results which vary a little in various runs [24]. Thus, these 

results can be minimized and negligible when the method 

is applied carefully. The present study, therefore, 

conducted 1000 samples (equal to 1000 years).  
Fig. 2. Proposed simulation flowchart 

 

3. Formulating the Problem 

3.1. Well-being analysis Models 

Health state refers to a condition when a power system 

can provide the required load and secure a desirable 

reserve. When the system fails to provide the necessary 

load, it is in a risk state. Any condition that falls between 

these two states is known as marginal: the system can only 

provide its required load [25], [26]. 

Since the actual load is continually fluctuating, the 

uncertainty in predicting short-term load and possible 

errors create particular problems. A sufficient reserve load 

must be thought out to adequately feed the required load 

[26]. MCS can track working/failed generation units and, 

thus, can be used to evaluate the operation of the power 

system. Accordingly, the reserve is calculated when the 

most significant unit is subtracted from the available 

capacity at any given reserve level. Then heath, risk, and 

marginal states are determined by assuming the following 

periods: 
The risk is linked to those levels with loads more 

abundant than available capacity and is calculated by the 

following equation [26]. 

(1) 
𝑃𝑟 =

∑ 𝑇𝑟𝑖

𝑇
 

Health defines the condition when the system provides 

its load and has a desirable reserve. In other words. 
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Capacity of the total load < (Available Capacity largest 

unit) 

Equation 2 shows the probability of system health [26]. 

(2) 
𝑃ℎ =

∑ 𝑇ℎ𝑖

𝑇
 

A risk state refers to a state when the system can 

provide its load but cannot maintain a reserve load [18]. 

(3) 
𝑃𝑚 =

∑ 𝑇𝑚𝑖

𝑇
 

Where: 

(4) 𝑃ℎ+𝑃𝑚 + 𝑃𝑟 = 1 

A better and more detailed description of these states 

is given in Fig.3. 

3.2. Reliability 

The primary task of a power system is to provide 

electric energy for consumers economically and reliably 

[27]. There are many parameters in a power system that 

affect reliability [28]: load demand, generation units' 

specifications, associated systems, consuming available 

resources, and load control and management. In HLII or 

composite system, the Loss of Load Expectation (LOLP) 

and Expected Energy Not Served (EENS) are essential 

factors which are calculated by (5) and (6). Other 

reliability indices are health and marginal duration, which 

are represented in (7) and (8), respectively [26]. 
 

3.3. Monte Carlo Simulation (MCS) 

According to references [29], there are two ways to 

determine the reliability indices: deterministic or 

analytical method and probabilistic or accidental 

simulation. The analytical methods usually employ 

mathematical models that include simplification. Here, 

reliability indices are achieved through solving the 

mathematical problems directly. However, in simulation 

methods, these indices are determined along the actual 

process and according to system behavior. 

 MCS is a widely used method for determining 

reliability indices [27]. The term MCS is generally 

applied to any technique that estimates quantitative 

variables through simulation. Finally, it is fair to say that 

MCS can be used to simulate the power system and 

penetration of EVs [30]. 

(5) 𝐿𝑂𝐿𝑃 =
∑ 𝑡(𝑟)𝑖

𝑛(𝑟)
𝑖=1

𝑁 × 8760
 

(6) 𝐸𝐸𝑁𝑆 =
∑ 𝑒𝑖

𝑛(𝑟)
𝑖=1

𝑁 × 8760
 

(7) 

( )

1

( ) i

( )

n H

i

t H

EHDUR
n H




 

(8) 

(M)

1

(M)i

(M)

n

i

t

EMDUR
n




 

 

Fig.3. Three modes of health, margin, and risk in power 

systems according to load profile and generation 

capacity 

3.4. States of Generating Units 

The trial IEEE-RBTS system under study is 

characterized by 11 generating units with 240MW 

capacity. These units can be coupled in discreet and 

mutually incompatible pairs. Therefore, the case where 

working and failed units are displayed as available and 

unavailable in a bimodal demonstration (Forced Outage 

Rate). The probability of other occurrences demands the 

introduction of a highly complex arrangement in mode 

space. The probability of the bimodal availability and 

unavailability is computed by using the following 

equations in the analytical method [27], [32]: 

𝐴 =
𝜇

𝜇 + 𝜆
 Available Status (9) 

𝐹𝑂𝑅 =
𝜆

𝜇 + 𝜆
 

Unavailable 

Status 
(10) 

In the present paper, the MCS of units in the bimodal 

unit is possible by using a random value between (0 - 1). 

 

3.5. The Duration of States 

The random value must be transferred to the time 

domain to determine the duration of the state. The 

bimodal generating units are described by the model 

presented in Fig.4. 

 
Fig.4. Dual-mode generation unit [14], and [19]. 

 

The random values for time to failure (TTF) and time 

to repair (TTR) for a bimodal model of the generating 

units (Fig.4.) are computed as follows [17], [32]: 

(11) 𝑇𝑇𝐹 = −
1

𝜆
𝐿𝑛 𝑈1 

(12) 𝑇𝑇𝑅 = −
1

µ
𝐿𝑛 𝑈2 

Where U1 and U2 represent two random values 

between 0 and 1. 

The sequential sampling of the functioning, failure, and 

usage-repair can be realized by a chronological sampling 

of the values for TTF, TTR, and TTF. 
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4. Simulation results of the proposed method 

One of the main parts of simulation is the matrix 

arrangement of the data about the system that are the input 

for MCS. The simulation is considered for 1000 years to 

get better accurate results. Therefore, the matrixes include 

25 columns and 8736 rows, and therefore the entire matrix 

has 8736000 rows. Given the probability function of MCS 

about integrating loads, generation, and transmission 

lines, there are some states that have no generation or 

transmission lines. This means that some buses display 

drop or decrease in load (in this study, the min and max 

voltages are 0.97 and 1.05, respectively). To correct the 

voltage profile and identify buses, AC loads are 

distributed to any rows from the matrix and buses with a 

drop in voltage are corrected through adding reactive 

power to both buses no. 4 and 6 up to 10MVar in 0.01 

steps. If after this addition, the voltage of buses remains 

still beyond the desirable range, the load is interrupted in 

steps of 0.1MW to correct the voltage profile. In case that 

voltage drop is still not corrected, it is considered a 

defective state and will be removed from the matrix and 

analytical calculations of the power system. In the power 

system under study, 165000 rows are removed from the 

matrix. As such, 25 columns and 8571000 rows are 

considered. 

After removing defective states, 36 penetration states 

are applied to the matrix. As a result, 36 matrixes with 25 

columns and 8571000 rows are under study. Distribution 

is conducted for each row of these 36 matrixes, and those 

EVs whose voltage profiles are not corrected at this point 

are removed from the matrix and then the reliability 

indices are computed. 

4.1. The System under Study 

This research studies a 6-bus IEEE-RBTS system for 

which a Single-Line Diagram (SLD) is used in this article 

[31]. This system consists of 6 buses, and buses no. 1 and 

2 represent generation units. On the whole, there are 11 

generating units. Transmission lines operate with 230KV 

the total capacity is 240MW, and the peak load is 

185MW. The network also includes two distribution 

systems installed in buses no. 2 and 4. These systems are 

comprehensive and contain main reforms and factors [30]. 

This research studies a 6-bus IEEE-RBTS system for 

which a Single-Line Diagram is presented in Fig. 5. 

4.2. Simulating Parameters 

4.2.1. Load Simulation 

There are two main ways to display variations in the 

load employed in MCS: temporal and non-temporal [24]. 

 The temporal method extends the load levels 

in the order or chronological format of their 

actual or possible occurrences. This can be 

annually or in  

 

Fig.5. SLD of the IEEE-RBTS network. 

 

other time frames. In the simulation, in 365 days, the 

maximum demands are specified, while it can also 

be displayed on an hourly basis, i.e., 8760 hours.   

 The non-temporal method displays the load levels in 

decreasing order and form of cumulative values. 

The present paper uses an hourly temporal method to 

display the variations. 

4.2.2. Estimating the number of Consumers 

The trial IEEE-RBTS system includes six buses with 

two distribution systems in buses no. 2 and 4. Buses 2 and 

4 feed 1850 and 4700 household consumers, respectively 

[28]. Moreover, every consumer has an average share of 

3.981KW (Table I). The total number of household 

consumers was computed by dividing the total household 

load by the mean share of each consumer. 

The average consumption of household loads is equal 

to 62.9 MW, with the number of consumers equal to 

15800 people; the same amount of EVs can be added to 

the power system.  

4.2.3. The Penetration Schemes for EVs 

Introducing EVs into the system means an extra load 

for the system. The load curve changes according to the 

number, speed, and charge time of these EVs. Load 

simulation shows days with the maximum load if a year is 

assumed to have 365 days. The present paper analyzes 

various scenarios and different states along with 

penetration percentage, time, charge amount and length of 

the plug-in are as follow: 

4.2.3.1. Penetration percentage 

Adding EVs happens at different levels. This research 

considers three levels (Table II): 10%, 20%, and 30% 

[31]. 

4.2.3.2. Speed and duration of the charge 

Today, there are different models of EVs, and these 

models will develop in performance and range. According 

to references [32], this study considers three models of 

EVs (Table III). A single type of battery (24.1KW) is 

assumed here in this study, while the equation (16) is held 

to be true for all EVs and shows the average size battery 

[33]. 

(16) EVs′composition (%) × Battery Capacity (kWh) = 

(0.37 × 35) + (0.1 × 16) + (0.53 × 18)

= 24.1 (𝑘𝑤ℎ) 
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Table I. Residential Consumer Specifications for IEEE-

RBTS Distribution Systems 

BUS 

NUMBER OF 

RESIDENTIAL 

CUSTOMERS 

TOTAL RESIDENTIAL 

LOAD IN THE BUS MW 

AVERAGE LOAD 

PER CONSUMER 

KW 

2 1580 7.25 3.919 

4 4700 19 4.043 

AVERAGE   3.981 

 

Table II. EV penetration percentage 
STATE OF % PENETRATION NUMBER OF EV 

1 10 1580 

2 20 3160 

3 30 4740 
 

Table III. Electrical vehicle info 
Value EV type EV's Parameter 

37 BEV 

EVs′composition (%) 10 City-BEV 

53 PHEV90 

35 BEV 

Battery Capacity (kWh) 16 City-BEV 

18 PHEV90 

24.1  Average battery capacity (kWh) 

 

Two modes are considered for charging EVs (Table 

IV) that vary according to the hours of charge and the 

power received from the network [34]. 

 

Table IV. Battery charge time 

CHARGE TYPE 
CHARGING TIME 

(HRS) 

CONSUMING EV AT 

THE TIME OF 

RECHARGING (KW) 

SLOWLY 6 3.7 

FAST 2 11 

 

Table V. Available states of 10% and 20% of EV 
penetration, with Taking load levels 

STATE OF 1 TO 18 19 TO 36 

CHARGING 

SPEED 
FAST SLOWLY 

SCHEME 

TYPE 
1 2 1 2 

LOAD 

LEVEL % 
85 90 95 85 90 95 85 90 95 85 90 95 

4.2.3.3. Hours of connection to the network 

Previous studies usually assume that EVs are charged 

during low load periods [34]. This study assumes that 

some EVs are also charged during mid-peak and peak 

load. For this purpose, two charge schemes are 

considered: 

 Scheme 1: 70% of the vehicles are charged during 

low load periods and 30% during mid-peak hours. 

 Scheme 2: 60% are charged during low load hours, 

30% during mid-peak load, and 10% during peak 

load hours.  

There are three penetration levels (10%, 20%, and 

30%), two charge modes, two penetration schemes, and 

three load shifting levels. Therefore, 36 states are 

considered for EVs under this study (Table V). 
 

4.3. Well-Being Model 

According to section 3.3.5. EVs were added to the 

power system under study while applying DSM. As a 

result, the load curve changed, and consequently, the 

values for the probability of health, risk, and marginal 

states underwent changes since the primary factor for 

evaluation of penetration of EVs, analysis of DSM, and 

comparison of different states is the analysis of the 

probability of risk mode in the system.  

It is necessary to determine the reliability indices at 

default conditions to evaluate the penetration of EVs and 

evaluate the effect of DSM on the reliability of the power 

system in the presence of EVs. Therefore, a table shows 

the definite capacity of generating units before adding 

EVs. Then, the probability values in each health, risk and 

marginal states are computed according to the load curve. 

The probability values of each state at default phase are 

computed using values for Th, Tm, Tr as well as total time 

period of applying the management (Table VI). 

 

Table VI. Results for the simulated power system 

at the base state.  

Ph Pm PR 

0.97852 0.01794 0.00229 

 

As indicated in section 4.2.3, penetration schemes for EVs 

are as follow: 

 Penetration percentage (10%, 20% and 30 %.) 

 Speed and duration of the charge 

 Hours of connection to the network (Scheme 1 and 

Scheme 2) 

 DR, according to Fig. 6. 

 A simulation of 36 different penetration states for 

EVs is presented in Table 7. 

 

Fig.6. Small Portion of the DR curve in the load shifting 
approach for three levels, including 85%, 90%, and 95%. 

As shown in Table VII, it is possible to conclude that 

the probability of a health state is 85% greater than the 

default conditions since in low load levels, fewer portions 

of peak load are in a risk state and vice versa. For instance, 

the probability of risk mode for penetration of EVs at 

three penetration levels and at three load shifting levels, 

and in 2 penetration schemes at a fast charge is given in 

Figs. 7 and 8. 

As shown in Figs. 7 and 8, the probability of risk  mode 

increases with the penetration of EVs and an increase in 

load shifting levels. According to Fig.8, the probability of 

risk mode in scheme 2 is higher than in scheme one since 

10% of EVs are charged during peak load. Also, the 

probability of risk mode for the system has decreased by 

85% of response in proportion to default conditions. This 

shows the importance of demand-side management. 
 



92                      Citation information: DOI 10.52547/ijrtei.1.1.85, International Journal of Research and Technology in Electrical Industry 

IJRTEI., 2022, Vol.1, No. 1, pp. 85-94 

 

Table VII. Simulation results for various DR 

considering EVs penetration 
Penetration level % 10 % 20 % 30 

   Slow Fast 
Slow Slow Slow Slow 

Ph 

1 

%85 0.97829 0.97827 0.97806 0.97790 0.97775 0.97755 

%90 0.97687 0.97687 0.97664 0.97647 0.97637 0.97612 

%95 0.97388 0.97405 0.97388 0.97373 0.97368 0.97337 

2 

%85 0.97816 0.97817 0.97775 0.97776 0.97740 0.97741 

%90 0.97665 0.97666 0.97620 0.97621 0.97569 0.97571 

%95 0.97385 0.97385 0.97336 0.97336 0.97285 0.97289 

Pm 

1 

%85 0.01965 0.01967 0.01986 0.02002 0.02015 0.02036 

%90 0.02021 0.02029 0.02036 0.02063 0.02055 0.02095 

%95 0.01944 0.01965 0.01958 0.01996 0.01971 0.02031 

2 

%85 0.01977 0.01977 0.02015 0.02014 0.02048 0.02047 

%90 0.02023 0.02023 0.02039 0.02039 0.02057 0.02057 

%95 0.01937 0.01937 0.01938 0.01938 0.01957 0.01957 

Pr 

1 

%85 0.00081 0.00081 0.00083 0.00082 0.00086 0.00084 

%90 0.00167 0.00163 0.00175 0.00165 0.00184 0.02095 

%95 0.00544 0.00505 0.00529 0.00506 0.00536 0.00507 

3 

%85 0.00082 0.00082 0.00085 0.00085 0.00087 0.00087 

%90 0.00187 0.00187 0.00216 0.00215 0.00249 0.00247 

%95 0.00553 0.00553 0.00600 0.00600 0.00632 0.00629 

 

 
Fig.7. The probability of risk mode for EVs penetration 
scenarios with 10, 20, and 30% at three load movement 

levels, two  penetration schemes, and EVs fast recharge. 

 

4.4. EHDUR and EMDUR criteria 

The duration of heath and marginal states is another 

reliability index useful for evaluating the reliability of 

generating the energy required by the consumers. The 

portion of time when the system remained in health and 

marginal states is computed using equations no. 7 and 8. 

The values for EHDUR and EMDUR are shown in Tables 

VIII and IX: they are based on simulation results for the 

default state and other states.  

 

 

Fig.8. The probability of risk mode for EVs penetration 

scenarios with 10, 20, and 30% at three load movement 

levels, second scheme, and EVs fast recharge. 

 

According to results presented in Tables VIII and IX, 

it can be said that more extensive penetration of EVs and 

the consequent elevation of load shifting levels (90% and 

95% instead of 85%) lead to shorter duration of health and 

marginal states. It is possible to hold that duration of 

health and marginal states are in a reverse relationship 

with the penetration percentage of EVs and load shifting 

level. Duration of health and marginal states is maximum 

in case of 85% response. For instance, the duration of the 

health state in 85% and 90% response to load is better than 

the default state, which a fact that confirms the necessity 

of demand-side management. In scheme 2, health 

durations and marginal conditions have been reduced 

more than in scheme 1.  

 
Table VIII. Durability index for modes of health and 

margin in the base state (in percentages) 

EMDUR EHDUR 

6.00782 0.0380 

 

Table IX. Frequency index in modes of health, margin, 

and risk for various load levels (in percentages). 

Load 

Penetration level 10% 20% 30% 

Type of 

Scheme 
Load Slow Fast Slow Fast Slow Fast 

E
H

D
U

R
 

1 

%85 496.51834 496.94421 495.36586 477.91435 493.49100 466.67067 

%90 451.08798 451.30899 450.17465 445.44184 448.41521 435.03752 

%95 376.85885 381.71031 368.45478 380.81724 365.35846 377.64950 

2 

%85 495.53324 495.53550 494.35177 494.41310 492.37771 492.38036 

%90 441.97182 442.36246 434.60940 434.63420 426.53329 426.62569 

%95 376.83047 376.88077 369.44418 369.44431 366.40120 365.67198 

E
M

D
U

R
 

1 

%85 9.66733 9.69004 9.74640 9.50499 9.85555 9.45225 

%90 7.87525 7.91312 7.92634 7.96325 7.96451 7.93532 

%95 5.32436 5.52758 5.12961 5.61060 5.09155 5.68124 

2 

%85 9.70058 9.69839 9.87512 9.87313 9.99659 9.99413 

%90 7.53177 7.55008 7.34443 7.34498 7.13702 7.13650 

%95 5.32461 5.32506 5.14466 5.14460 5.14753 365.67198 

 

4.5. LOLP and EENS criteria 

LOLP and EENS, other useful reliability indices, are 

computed by equations 5 and 6. The values for LOLP and 

EENS are shown in Tables X and XI: they are based on 

simulation results for the default state other states. 

Furthermore, LOLP and EENS in the event of EV 

penetration for 10%, 20%, and 30% at three load shifting 

levels and according to 2 penetration schemes at fast 

charge mode are presented in figs. 9 and10. 

According to results presented in Tables X and XI as well 

as figs. 9 and 10, it can be said that more extensive 

penetration of EVs and the consequent elevation of load 

levels lead to more significant variations in LOLP and 

EENS that can bring about a higher probability of risk 

state. Since 10% of the EVs are charged during peak load 

in scheme 2, the variations in LOLP and EENS are higher 

than in scheme 2.  
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Table X. The probability of loss of load index and 

expected unsupplied energy at various load levels 

(in percentages) 

Penetration level % 10 % 20 % 30 

 Slow Fast Slow Fast Slow Fast 

L
O

L
P

 

1 

%85 0.00081 0.00081 0.00083 0.00082 0.00086 0.00084 

%90 0.00167 0.00163 0.00175 0.00165 0.00184 0.00168 

%95 0.00544 0.00505 0.00529 0.00506 0.00536 0.00507 

2 

%85 0.00082 0.00082 0.00085 0.00085 0.00087 0.00087 

%90 0.00187 0.00187 0.00216 0.00215 0.00249 0.00247 

%95 0.00553 0.00553 0.00600 0.00600 0.00632 0.00629 

E
E

N
S

 

1 

%85 158.34029 157.36419 162.41795 160.46481 167.03972 164.10974 

%90 205.94852 204.29843 209.08356 205.56381 213.09863 207.43705 

%95 396.71956 375.93725 390.37591 377.02637 398.96287 378.25962 

2 

%85 160.88077 160.80423 167.35078 167.18895 174.18564 173.93146 

%90 213.26638 213.09636 224.88555 224.48871 238.21935 237.53162 

%95 404.96918 404.48007 437.82488 436.75410 472.96213 471.31908 

 

 

Table XI. The probability of loss of load index and 

expected unsupplied energy for the base power system 

(in percentages) 

EENS LOLP 

310.31593 0.00023 
 

 

Fig.9. LOLP index for EVs penetration scenarios with 

10, 20, and 30% at three load movement levels, second 

schemes, and EVs fast recharge. 
 

5. Analysis of results  
 Since the present study assumed the 10%, 20%, and 

30% penetration levels for EVs at three load shifting 

levels (85%, 90%, and 95%), the following results can 

be expressed: 

 EVs reduce the probability of a health state and 

increase the probability of marginal and risk states. 

With more significant penetration percentages or more 

EVs added to the system, the probability of risk mode 

increases while the reliability of the power system 

decreases. In other words, the following relationship 

holds in this study according to the assumed 

penetration levels:  

The probability of risk mode at 30% penetration level > 

Probability of risk mode at 20% penetration level > 

Probability of risk mode at 10% penetration level 

 According to the results, charging EVs during peak 

load reduces reliability much more than during mid-

peak load and low load. This leads to an increased 

probability of the risk state. Therefore, it is better to 

charge EVs during low and mid-peak loads.  

 Reduction or addition of load during peak loads has 

the most significant impact on the risk probability. In 

other words, charging the EVs during peak load can 

negatively affect system reliability. 

 

Probability of Risk in Scheme 2 > Probability of Risk 

in Scheme 1 

When the number of EVs charged at different times is 

determined, the speed of charging can have a different 

impact on system risk. The results show that the 

probability of risk for the system in slow charging mode 

is higher than in fast charging mode. 
 

 
Fig.10. EENS index for EVs penetration scenarios with 

10, 20, and 30% at three load movement levels, second 

scenario s, and EVs fast recharge. 

 

6. Conclusion 

This paper investigates the effects of EVs in power 

systems regarding penetration percentage, charging 

speed, time of charging speed, and various penetration 

schemes. The analyses show that adding EVs into HLII as 

new loads lead to an increase in the risk state in the power 

system. Therefore, demand-side management can be 

applied as an effective and inexpensive way to reduce the 

probability of risk mode without expanding facilities of 

the grid or transmission lines. The application of demand-

side management with load shifting technique in HLII 

showed that this method could maintain the penetration 

level of EVs and enhance the reliability level of the power 

system. 
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