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The use of Demand-Side Management (DSM) to increase the reliability of 
composite power systems at hierarchical level II (HLII) with Electric Vehicles 
(EVs) is an important issue that has not been studied so far. Studies that have been 
conducted assumed that EVs are connected to the power system during the mid-
peak load and peak load in two charge levels with uncertainty in influence and  
three load shifting levels (85%, 90%, and 95%). The reliability indices Loss of 
Load Expectation (LOLP), Expected Energy Not Supplied (EENS), Expected 
Health Duration (EHDUR), and Expected Margin Duration (EMDUR) are 
calculated. The present paper uses Monte Carlo Simulation (MCS) in modeling 
the uncertainty in the generation and transmission capacity of the power system 
and the influence of EVs. The modeling was performed on IEEE-RBTS standard 
system using the MATLAB software. The result indicates that more penetration of 
EVs will lead to higher load levels, and thereby LOLP and EENS indices will 
change much more, a trend that increases even more when EVs are charged during 
peak load. It is possible to increase EHDUR and EMDUR values by increasing 
load-shifting levels (95% to 90% and 85%). 
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Nomenclature 
 

Random number in range (0, 1) 𝑈 
Probability of system health 𝑃! 
Probability of system margin 𝑃" 
Probability of system risk 𝑃# 
Duration of the ith healthy states (hours) Thi 
Duration for the ith marginal states (hours) Tmi 
Duration for the ith risk states (hours) Tri 
Total simulation time (hours) T, Tx 
The length of the program period is based on the year m 
Frequency of health (occurrences/year) 𝐹(ℎ) 
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Frequency of marginal (occurrences/year) 𝐹(𝑚) 
Frequency of risk (occurrences/year) 𝐹(𝑟) 
Total number of healthy states 𝑛(ℎ) 
Total number of marginal states 𝑛(𝑚) 
Total number of risk states 𝑛(𝑟) 
Total number of simulated (year) 𝑁 

Subscripts 
Availability A 

Greek 
Expected failure rate λ 
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Expected repair rate µ 

Abbreviations 
Forced Outage Rate 𝐹𝑂𝑅 
Time To Failure TTF 
Time To Repair TTR 
Loss of Load Probability LOLP 
Expected Energy Not Supplied (mwh/year) EENS 
Expected Health Duration (hours/occurrences) EHDUR 
Expected Margin Duration EMDUR 

 
1. Introduction 

Global environmental concerns, the decline in fossil 
fuels, and the consequent rise in fuel prices have led to an 
ever-increasing demand for electric energy. At the same 
time, electric power generation and transportation sectors 
are some but directly linked with 21st-century issues like 
maximum oil production, climate change, and energy 
independence. Currently, the facilities to build up 
transportation and greater electric power generation use 
more than 60% of the world's primary energies [1]. As a 
result, there is a growing interest in technologies such as 
EVs that can replace combustion fuel cars. These 
technologies help reduce dependence on petroleum 
products and the emission of greenhouse gases  [2]. 
Electric transportation is considered a good alternative as 
it can considerably reduce the need for petroleum 
products and facilitate the use of renewable energies [2]. 
In recent decades, electric transportation systems such as 
electric trains have developed significantly and can be 
considered the primary infrastructure in the field of 
transportation in the future.  

With the growing popularity of EVs, there is a severe 
challenge to the stability of the power system, as large 
volumes of mobile consumers across the grid cause 
imbalances [3]. Increasing the availability of electric 
machines and lack of proper energy management can lead 
to instability of the power system [4]. In order to study the 
reliability and suitability of the grid, it is necessary to 
recognize the behavior of EVs owners and appropriate 
management methods for these vehicles. Many 
researchers and methods have tried to find ways to 
mitigate these undesirable. 

 
1.1.  Background of the Research 
In general, various studies and methods have been 

proposed to reduce the adverse effects of EVs on different 
loads. For example: 

To predict the expected daily power for the 
uncoordinated charging power demand of an EV, a 
stochastic process has been utilized in [5]. Different 
charging time distributions and departure time as another 
random variable are considered in the model presented to 
manage the autonomous Demand Response (DR) 
technique to control the EV charging demand. In  

 The effect of integration of EVs on DR programs 
considering classifications types of customers with an 
emphasis on invaluable services that EVs can provide in 
smart grid assets is scrutinized in [6].  

An optimal power dispatch problem on a 24-hours 
basis for distribution systems incorporated with directly 
controlled shiftable loads and renewable energy resources 
has been introduced. The number of optimization 
variables has been reduced using the optimization 
approach presented in [7].  

The economic impacts of the vehicle to grid regulation 
reserves considering the restrictions arising from 
unpredictable mobility by vehicle users is analyzed 
through an actual case study in which a dynamic approach 
reveals a significant improvement compared with static 
ones is presented in [8].  

A stochastic scheduling approach is proposed for many 
EVs parked in an intelligent parking lot is introduced in 
[9]. A self-scheduling model for an intelligent parking lot 
equipped solar systems and distributed generation through 
which practical constraints, solar radiation uncertainty, 
spinning reserve requirements, and EVs owner 
satisfaction are considered.  

To coordinate the charging and discharging of EVs 
considering the frequency deviation signal to deal with the 
uncertainty of renewable energy generations, a dynamic 
demand control has been proposed in [10] leads to 
distinguishing characteristics such as simplicity, 
efficiency, robustness, and readiness for practical 
applications.  

In [11], DSM of Plug-in Hybrid EVs (PHEVs) will 
become necessary to reduce peak loads as the penetration 
of PHEVs becomes greater. Trying to flatten the power-
demand curve at transformers will avoid overloading and 
defer investment. 

 To control the risk management and participation 
planning of EVs in the smart grid at high penetration level 
of renewable energy resources, a stochastic model is 
introduced from the Independent System Operator's 
perspective in a away that cover all uncertainties caused 
by renewables, load patterns, parking patterns, and 
transmission lines' reliability [12].  

In [13] has developed a model to create coordination 
between various PHEVs charging and discharging to 
reduce the electricity consumption peak and valley. In 
addition, the PHEVs owners earn economic profit in the 
grid through the demand peak and valley reduction. A DR 
scenario is presented as a corrective action following a 
contingency to maintain the power system within its limits 
during the urgent condition.  

To quantify the reliability performance under different 
scenarios considering the influence of information and 
communication technology as well as automatic control 
scenarios, Sequential MCS are employed [14]. 

 
1.2. Classification of Power Systems for Evaluating 

Reliability 
Modern electric systems are characterized by a vast 

and complex set of units from generation to individual 
consumers. Therefore, digital software and hardware are 
not entirely sufficient for the job of accurate and inclusive 
reliability evaluation of the grids. The power system parts 
are classified into three categories of generation, 
transmission, and transmission, based on their 
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performance and reliability. This classification can be 
integrated to form hierarchical levels for reliability 
analysis [15]. 

The first hierarchical level (HLI) involves the 
assessment of reliability at the level of generation units 
and the ability of these generation units to satisfy local 
loads. 

Reliability evaluation of Hierarchical Level II (HLII), 
includes generation units as well as a transmission 
network. Reliability evaluation of composite power 
systems is, in fact, the analysis of the capability to 
transmit electrical energy to consumers or main load 
points. Reliability evaluation of the third hierarchical 
level includes generation, transmission network, and 
distribution systems, and it considers the system's ability 
to provide energy for all consumers. Given the 
compartmentalization of the power system, reliability 
indices vary at different levels. Therefore, the present 
study focuses on the reliability indices of HLII. 

DSM strategy can be considered a practical solution to 
increase the reliability of the power system in the presence 
of EVs [16]. Therefore, DSM can increase the reliability 
of the power system without expanding it, which helps 
improve the presence of EVs while maintaining reliability 
indices. 

 
1.3. DSM plans 
The DSM includes two mutually effective plans: 

Energy efficiency and DR [17]. Energy efficiency or 
management analyzes daily or seasonal energy 
consumption and reformats it into an optimal 
consumption scheme. DR refers to a set of practices that 
consumers follow in reforming consumption models, 
enhancing network reliability for greater productivity of 
facilities, boosting economics of investments, and 
removing energy limits. These practices help control 
costs, especially during peak load periods [17]. Various 
methods of remodeling load in DR are presented in Fig.1. 
[18]. 

 
Fig.1. Different methods to change the load curve and 

shape in the DR program [18]. 
 

DR by load shifting technique is a widely used in DSM 
[19]. The extent DR using the load shifting technique 
influences reliability indices of the power system is 
excellent and depends on the shift amount from peak load 
during low load periods. Therefore, shifting load was 
performed at different levels, and resulting indices were 

used to analyze the model [20]. One of these indices is the 
application of the indices of system well-being criteria 
incorporating deterministic criteria in the probabilistic 
framework. These indices can integrate deterministic 
criteria in probability calculations to determine the system 
behavior [21]. Well-being analysis can also be considered 
in establishing the definite or probable criteria for 
determining the reserve required by power systems [21]. 
The present paper uses DR (concerning probable state 
programs for initiatives) at three levels to investigate the 
impact of the presence of EVs at three levels of 85%, 90%, 
and 95%, despite the uncertainty. The behavior of the 
power system in the selected model was evaluated using 
well-being analysis and indices as basic indices in 
assessing the reliability of the power system.  

 
1.4. Innovation and Novelty 
In general, during the reliability evolution of 

composite power system, it is necessary to understand 
calculated indices, which make the problem more 
complex [22] In this situation, system adequacy 
assessment is used to evaluate the considered indices. To 
gain the probability of lacking the system adequacy in the 
complex power system, each system's power flow 
analysis is performed considers the load model defined for 
that network. The load modeling can be done in three 
different ways: constant current, constant power, and 
constant impedance loads. load changes over time and 
each specific amount of load is valid just for an instant. 
Therefore, the AC power flow analysis is conducted for 
loads and generators for a short period. As a result, the 
main purpose of the AC power flow is to determine the 
steady state condition of bus voltages considering the 
constant power load model as the worst-case scenario 
considered in this paper. 

Overall, in the present study, the applicability of DSM 
for enhancing the productivity of the facilities and 
enhancing the reliability of a hybrid power system, 
including generation, transmission lines, and loads in the 
presence of EVs, is evaluated using the MCS method and 
in correspondence to their uncertainty. It is assumed: 

The probabilistic situations created by MCS for load, 
generation, and transmission lines for 1000 years of the 
study (due to the enormity of the calculations) are equal 
to 36 matrices representing 36 different modes of 
penetration of EVs. Each matrix includes the number of 
hours (8736000 rows) and 25 columns (the symbols of 
probabilistic loads, generation, transmission lines). 

That EVs are connected to the power system during the 
critical and influential mid-peak load and peak load in two 
charging levels with uncertainty in influence and three 
load shifting levels (85%, 90%, and 95%).  

Considering the voltage of busbars as a critical 
criterion to determine the level of a load shift. (A voltage 
range of 0.97-1.05V is chosen for the present study. In 
case voltages fall outside this range after the power flow, 
reactive power can be injected to put voltages within the 
predetermined limits. Thus, these cases in the evaluation 
of the variables can be considered as non-problematic 
situations.) 
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Employing well-being for the reliability evolution of 
the power system. 

An AC power flow is selected to better evaluate the 
research variables, including LOLP, EENS, EHDUR, and 
EMDUR, so that the effects of the transmission lines on 
the precise evaluation of variables can be analyzed. 

This is the case because when the loading level of 
power transmission lines is considered the loading 
criteria, the DC power flow is enough. But, while the 
busbar voltage value is also considered, the AC power 
flow should be used [23].  

Because the AC power flow helps determine the 
effects of transmission lines on the provision of load and 
thus a better evaluation of the variables. 

DR programs are generally divided into two types (i.e., 
price-based DR and incentive-based DR). In this paper, 
DR is considered motivational which is determined by 
companies and governments. 

  
2. Proposed Methods 
2.1. Simulation Flowchart  

In this paper, MCS was applied to simulate different 
states of power system with uncertainty in generation 
capacity and in transmission and also well-being model 
was applied to evaluate different states of operation of the 
system in HLII level with penetration of EVs (shown in 
Fig.4. MCS is a probabilistic method with approximate 
results which vary a little in various runs [24]. Thus, these 
results can be minimized and negligible when the method 
is applied carefully. The present study, therefore, 
conducted 1000 samples (equal to 1000 years).  

Fig. 2. Proposed simulation flowchart 
 

3. Formulating the Problem 
3.1. Well-being analysis Models 

Health state refers to a condition when a power system 
can provide the required load and secure a desirable 
reserve. When the system fails to provide the necessary 
load, it is in a risk state. Any condition that falls between 
these two states is known as marginal: the system can only 
provide its required load [25], [26]. 

Since the actual load is continually fluctuating, the 
uncertainty in predicting short-term load and possible 
errors create particular problems. A sufficient reserve load 
must be thought out to adequately feed the required load 
[26]. MCS can track working/failed generation units and, 
thus, can be used to evaluate the operation of the power 
system. Accordingly, the reserve is calculated when the 
most significant unit is subtracted from the available 
capacity at any given reserve level. Then heath, risk, and 
marginal states are determined by assuming the following 
periods: 

The risk is linked to those levels with loads more 
abundant than available capacity and is calculated by the 
following equation [26]. 

(1) 
𝑃# =

∑𝑇𝑟𝑖
𝑇  

Health defines the condition when the system provides 
its load and has a desirable reserve. In other words. 
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Capacity of the total load < (Available Capacity largest 
unit) 

Equation 2 shows the probability of system health [26]. 
(2) 

𝑃! =
∑𝑇ℎ𝑖
𝑇  

A risk state refers to a state when the system can 
provide its load but cannot maintain a reserve load [18]. 

(3) 
𝑃" =

∑𝑇𝑚𝑖
𝑇  

Where: 
(4) 𝑃!+𝑃" + 𝑃# = 1 

A better and more detailed description of these states 
is given in Fig.3. 
3.2. Reliability 

The primary task of a power system is to provide 
electric energy for consumers economically and reliably 
[27]. There are many parameters in a power system that 
affect reliability [28]: load demand, generation units' 
specifications, associated systems, consuming available 
resources, and load control and management. In HLII or 
composite system, the Loss of Load Expectation (LOLP) 
and Expected Energy Not Served (EENS) are essential 
factors which are calculated by (5) and (6). Other 
reliability indices are health and marginal duration, which 
are represented in (7) and (8), respectively [26]. 

 
3.3. Monte Carlo Simulation (MCS) 

According to references [29], there are two ways to 
determine the reliability indices: deterministic or 
analytical method and probabilistic or accidental 
simulation. The analytical methods usually employ 
mathematical models that include simplification. Here, 
reliability indices are achieved through solving the 
mathematical problems directly. However, in simulation 
methods, these indices are determined along the actual 
process and according to system behavior. 

 MCS is a widely used method for determining 
reliability indices [27]. The term MCS is generally 
applied to any technique that estimates quantitative 
variables through simulation. Finally, it is fair to say that 
MCS can be used to simulate the power system and 
penetration of EVs [30]. 

(5) 𝐿𝑂𝐿𝑃 =
∑ 𝑡(𝑟)$
%(#)
$()
𝑁 × 8760  

(6) 𝐸𝐸𝑁𝑆 =
∑ 𝑒$
%(#)
$()

𝑁 × 8760 

(7)  

(8)  

 
Fig.3. Three modes of health, margin, and risk in power 
systems according to load profile and generation 
capacity 
3.4. States of Generating Units 

The trial IEEE-RBTS system under study is 
characterized by 11 generating units with 240MW 
capacity. These units can be coupled in discreet and 
mutually incompatible pairs. Therefore, the case where 
working and failed units are displayed as available and 
unavailable in a bimodal demonstration (Forced Outage 
Rate). The probability of other occurrences demands the 
introduction of a highly complex arrangement in mode 
space. The probability of the bimodal availability and 
unavailability is computed by using the following 
equations in the analytical method [27], [32]: 
𝐴 =

𝜇
𝜇 + 𝜆 Available Status (9) 

𝐹𝑂𝑅 =
𝜆

𝜇 + 𝜆 Unavailable 
Status (10) 

In the present paper, the MCS of units in the bimodal 
unit is possible by using a random value between (0 - 1). 

 
3.5. The Duration of States 

The random value must be transferred to the time 
domain to determine the duration of the state. The 
bimodal generating units are described by the model 
presented in Fig.4. 

 
Fig.4. Dual-mode generation unit [14], and [19]. 

 
The random values for time to failure (TTF) and time 

to repair (TTR) for a bimodal model of the generating 
units (Fig.4.) are computed as follows [17], [32]: 

)11( 𝑇𝑇𝐹 = −
1
𝜆 𝐿𝑛	𝑈) 

)12( 𝑇𝑇𝑅 = −
1
µ𝐿𝑛	𝑈* 

Where U1 and U2 represent two random values 
between 0 and 1. 

The sequential sampling of the functioning, failure, and 
usage-repair can be realized by a chronological sampling 
of the values for TTF, TTR, and TTF. 

4. Simulation results of the proposed method 
One of the main parts of simulation is the matrix 

( )

1
( ) i

( )

n H

i
t H

EHDUR
n H
==
å

(M)
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arrangement of the data about the system that are the input 
for MCS. The simulation is considered for 1000 years to 
get better accurate results. Therefore, the matrixes include 
25 columns and 8736 rows, and therefore the entire matrix 
has 8736000 rows. Given the probability function of MCS 
about integrating loads, generation, and transmission 
lines, there are some states that have no generation or 
transmission lines. This means that some buses display 
drop or decrease in load (in this study, the min and max 
voltages are 0.97 and 1.05, respectively). To correct the 
voltage profile and identify buses, AC loads are 
distributed to any rows from the matrix and buses with a 
drop in voltage are corrected through adding reactive 
power to both buses no. 4 and 6 up to 10MVar in 0.01 
steps. If after this addition, the voltage of buses remains 
still beyond the desirable range, the load is interrupted in 
steps of 0.1MW to correct the voltage profile. In case that 
voltage drop is still not corrected, it is considered a 
defective state and will be removed from the matrix and 
analytical calculations of the power system. In the power 
system under study, 165000 rows are removed from the 
matrix. As such, 25 columns and 8571000 rows are 
considered. 

After removing defective states, 36 penetration states 
are applied to the matrix. As a result, 36 matrixes with 25 
columns and 8571000 rows are under study. Distribution 
is conducted for each row of these 36 matrixes, and those 
EVs whose voltage profiles are not corrected at this point 
are removed from the matrix and then the reliability 
indices are computed. 

4.1. The System under Study 
This research studies a 6-bus IEEE-RBTS system for 

which a Single-Line Diagram (SLD) is used in this article 
[31]. This system consists of 6 buses, and buses no. 1 and 
2 represent generation units. On the whole, there are 11 
generating units. Transmission lines operate with 230KV 
the total capacity is 240MW, and the peak load is 
185MW. The network also includes two distribution 
systems installed in buses no. 2 and 4. These systems are 
comprehensive and contain main reforms and factors [30]. 
This research studies a 6-bus IEEE-RBTS system for 
which a Single-Line Diagram is presented in Fig. 5. 

4.2. Simulating Parameters 
4.2.1. Load Simulation 
There are two main ways to display variations in the 

load employed in MCS: temporal and non-temporal [24]. 
• The temporal method extends the load levels 

in the order or chronological format of their 
actual or possible occurrences. This can be 
annually or in  

 
Fig.5. SLD of the IEEE-RBTS network. 

 
other time frames. In the simulation, in 365 days, the 
maximum demands are specified, while it can also 
be displayed on an hourly basis, i.e., 8760 hours.   

• The non-temporal method displays the load levels in 
decreasing order and form of cumulative values. 

The present paper uses an hourly temporal method to 
display the variations. 

4.2.2. Estimating the number of Consumers 
The trial IEEE-RBTS system includes six buses with 

two distribution systems in buses no. 2 and 4. Buses 2 and 
4 feed 1850 and 4700 household consumers, respectively 
[28]. Moreover, every consumer has an average share of 
3.981KW (Table I). The total number of household 
consumers was computed by dividing the total household 
load by the mean share of each consumer. 

The average consumption of household loads is equal 
to 62.9 MW, with the number of consumers equal to 
15800 people; the same amount of EVs can be added to 
the power system.  

4.2.3. The Penetration Schemes for EVs 
Introducing EVs into the system means an extra load 

for the system. The load curve changes according to the 
number, speed, and charge time of these EVs. Load 
simulation shows days with the maximum load if a year is 
assumed to have 365 days. The present paper analyzes 
various scenarios and different states along with 
penetration percentage, time, charge amount and length of 
the plug-in are as follow: 

4.2.3.1. Penetration percentage 
Adding EVs happens at different levels. This research 

considers three levels (Table II): 10%, 20%, and 30% 
[31]. 

4.2.3.2. Speed and duration of the charge 
Today, there are different models of EVs, and these 

models will develop in performance and range. According 
to references [32], this study considers three models of 
EVs (Table III). A single type of battery (24.1KW) is 
assumed here in this study, while the equation (16) is held 
to be true for all EVs and shows the average size battery 
[33]. 

(16) EVs!composition	(%) × Battery	Capacity	(kWh) = 
(0.37 × 35) + (0.1 × 16) + (0.53 × 18)

= 24.1	(𝑘𝑤ℎ) 
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Table I. Residential Consumer Specifications for IEEE-
RBTS Distribution Systems 

BUS 
NUMBER OF 
RESIDENTIAL 
CUSTOMERS 

TOTAL RESIDENTIAL 
LOAD IN THE BUS MW 

AVERAGE LOAD 
PER CONSUMER 

KW 
2 1580 7.25 3.919 
4 4700 19 4.043 

AVERAGE   3.981 
 

Table II. EV penetration percentage 
STATE OF % PENETRATION NUMBER OF EV 

1 10 1580 
2 20 3160 
3 30 4740 

 

Table III. Electrical vehicle info 
Value EV type EV's Parameter 

37 BEV 
EVs!composition	(%) 10 City-BEV 

53 PHEV90 
35 BEV 

Battery	Capacity	(kWh) 16 City-BEV 
18 PHEV90 

24.1  Average battery capacity (kWh) 
 
Two modes are considered for charging EVs (Table 

IV) that vary according to the hours of charge and the 
power received from the network [34]. 

 
Table IV. Battery charge time 

CHARGE TYPE CHARGING TIME 
(HRS) 

CONSUMING EV AT 
THE TIME OF 

RECHARGING (KW) 
SLOWLY 6 3.7 

FAST 2 11 
 

Table V. Available states of 10% and 20% of EV 
penetration, with Taking load levels 

STATE OF 1 TO 18 19 TO 36 
CHARGING 

SPEED FAST SLOWLY 

SCHEME 
TYPE 1 2 1 2 

LOAD 
LEVEL % 85 90 95 85 90 95 85 90 95 85 90 95 

4.2.3.3. Hours of connection to the network 
Previous studies usually assume that EVs are charged 

during low load periods [34]. This study assumes that 
some EVs are also charged during mid-peak and peak 
load. For this purpose, two charge schemes are 
considered: 
v Scheme 1: 70% of the vehicles are charged during 

low load periods and 30% during mid-peak hours. 
v Scheme 2: 60% are charged during low load hours, 

30% during mid-peak load, and 10% during peak 
load hours.  

There are three penetration levels (10%, 20%, and 
30%), two charge modes, two penetration schemes, and 
three load shifting levels. Therefore, 36 states are 
considered for EVs under this study (Table V). 

 

4.3. Well-Being Model 
According to section 3.3.5. EVs were added to the 

power system under study while applying DSM. As a 
result, the load curve changed, and consequently, the 
values for the probability of health, risk, and marginal 

states underwent changes since the primary factor for 
evaluation of penetration of EVs, analysis of DSM, and 
comparison of different states is the analysis of the 
probability of risk mode in the system.  

It is necessary to determine the reliability indices at 
default conditions to evaluate the penetration of EVs and 
evaluate the effect of DSM on the reliability of the power 
system in the presence of EVs. Therefore, a table shows 
the definite capacity of generating units before adding 
EVs. Then, the probability values in each health, risk and 
marginal states are computed according to the load curve. 
The probability values of each state at default phase are 
computed using values for Th, Tm, Tr as well as total time 
period of applying the management (Table VI). 

 
Table VI. Results for the simulated power system 

at the base state.  
Ph Pm PR 

0.97852 0.01794 0.00229 

 
As indicated in section 4.2.3, penetration schemes for EVs 
are as follow: 
• Penetration percentage (10%, 20% and 30 %.) 
• Speed and duration of the charge 
• Hours of connection to the network (Scheme 1 and 

Scheme 2) 
• DR, according to Fig. 6. 
• A simulation of 36 different penetration states for 

EVs is presented in Table 7. 

 
Fig.6. Small Portion of the DR curve in the load shifting 
approach for three levels, including 85%, 90%, and 95%. 

As shown in Table VII, it is possible to conclude that 
the probability of a health state is 85% greater than the 
default conditions since in low load levels, fewer portions 
of peak load are in a risk state and vice versa. For instance, 
the probability of risk mode for penetration of EVs at 
three penetration levels and at three load shifting levels, 
and in 2 penetration schemes at a fast charge is given in 
Figs. 7 and 8. 

As shown in Figs. 7 and 8, the probability of risk  mode 
increases with the penetration of EVs and an increase in 
load shifting levels. According to Fig.8, the probability of 
risk mode in scheme 2 is higher than in scheme one since 
10% of EVs are charged during peak load. Also, the 
probability of risk mode for the system has decreased by 
85% of response in proportion to default conditions. This 
shows the importance of demand-side management. 
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Table VII. Simulation results for various DR 
considering EVs penetration 

Penetration level % 10 % 20 % 30 

   Slow Fast Slow Slow Slow Slow 

Ph 

1 

%85 0.97829 0.97827 0.97806 0.97790 0.97775 0.97755 

%90 0.97687 0.97687 0.97664 0.97647 0.97637 0.97612 

%95 0.97388 0.97405 0.97388 0.97373 0.97368 0.97337 

2 

%85 0.97816 0.97817 0.97775 0.97776 0.97740 0.97741 

%90 0.97665 0.97666 0.97620 0.97621 0.97569 0.97571 

%95 0.97385 0.97385 0.97336 0.97336 0.97285 0.97289 

Pm 

1 

%85 0.01965 0.01967 0.01986 0.02002 0.02015 0.02036 

%90 0.02021 0.02029 0.02036 0.02063 0.02055 0.02095 

%95 0.01944 0.01965 0.01958 0.01996 0.01971 0.02031 

2 

%85 0.01977 0.01977 0.02015 0.02014 0.02048 0.02047 

%90 0.02023 0.02023 0.02039 0.02039 0.02057 0.02057 

%95 0.01937 0.01937 0.01938 0.01938 0.01957 0.01957 

Pr 

1 

%85 0.00081 0.00081 0.00083 0.00082 0.00086 0.00084 

%90 0.00167 0.00163 0.00175 0.00165 0.00184 0.02095 

%95 0.00544 0.00505 0.00529 0.00506 0.00536 0.00507 

3 

%85 0.00082 0.00082 0.00085 0.00085 0.00087 0.00087 

%90 0.00187 0.00187 0.00216 0.00215 0.00249 0.00247 

%95 0.00553 0.00553 0.00600 0.00600 0.00632 0.00629 

 

 
Fig.7. The probability of risk mode for EVs penetration 
scenarios with 10, 20, and 30% at three load movement 
levels, two  penetration schemes, and EVs fast recharge. 

 

4.4. EHDUR and EMDUR criteria 
The duration of heath and marginal states is another 

reliability index useful for evaluating the reliability of 
generating the energy required by the consumers. The 
portion of time when the system remained in health and 
marginal states is computed using equations no. 7 and 8. 
The values for EHDUR and EMDUR are shown in Tables 
VIII and IX: they are based on simulation results for the 
default state and other states.  

 

 
Fig.8. The probability of risk mode for EVs penetration 
scenarios with 10, 20, and 30% at three load movement 
levels, second scheme, and EVs fast recharge. 

 
According to results presented in Tables VIII and IX, 

it can be said that more extensive penetration of EVs and 
the consequent elevation of load shifting levels (90% and 
95% instead of 85%) lead to shorter duration of health and 
marginal states. It is possible to hold that duration of 
health and marginal states are in a reverse relationship 
with the penetration percentage of EVs and load shifting 
level. Duration of health and marginal states is maximum 
in case of 85% response. For instance, the duration of the 
health state in 85% and 90% response to load is better than 
the default state, which a fact that confirms the necessity 
of demand-side management. In scheme 2, health 
durations and marginal conditions have been reduced 
more than in scheme 1.  

 
Table VIII. Durability index for modes of health and 

margin in the base state (in percentages) 
EMDUR EHDUR 

6.00782 0.0380 
 

Table IX. Frequency index in modes of health, margin, 
and risk for various load levels (in percentages). 

Load 
Penetration level 10% 20% 30% 

Type of 
Scheme Load Slow Fast Slow Fast Slow Fast 

E
H

D
U

R
 

1 

%85 496.51834 496.94421 495.36586 477.91435 493.49100 466.67067 

%90 451.08798 451.30899 450.17465 445.44184 448.41521 435.03752 

%95 376.85885 381.71031 368.45478 380.81724 365.35846 377.64950 

2 

%85 495.53324 495.53550 494.35177 494.41310 492.37771 492.38036 

%90 441.97182 442.36246 434.60940 434.63420 426.53329 426.62569 

%95 376.83047 376.88077 369.44418 369.44431 366.40120 365.67198 

E
M

D
U

R
 1 

%85 9.66733 9.69004 9.74640 9.50499 9.85555 9.45225 

%90 7.87525 7.91312 7.92634 7.96325 7.96451 7.93532 

%95 5.32436 5.52758 5.12961 5.61060 5.09155 5.68124 

2 

%85 9.70058 9.69839 9.87512 9.87313 9.99659 9.99413 

%90 7.53177 7.55008 7.34443 7.34498 7.13702 7.13650 

%95 5.32461 5.32506 5.14466 5.14460 5.14753 365.67198 

 

4.5. LOLP and EENS criteria 
LOLP and EENS, other useful reliability indices, are 

computed by equations 5 and 6. The values for LOLP and 
EENS are shown in Tables X and XI: they are based on 
simulation results for the default state other states. 
Furthermore, LOLP and EENS in the event of EV 
penetration for 10%, 20%, and 30% at three load shifting 
levels and according to 2 penetration schemes at fast 
charge mode are presented in figs. 9 and10. 
According to results presented in Tables X and XI as well 
as figs. 9 and 10, it can be said that more extensive 
penetration of EVs and the consequent elevation of load 
levels lead to more significant variations in LOLP and 
EENS that can bring about a higher probability of risk 
state. Since 10% of the EVs are charged during peak load 
in scheme 2, the variations in LOLP and EENS are higher 
than in scheme 2.  
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Table X. The probability of loss of load index and 
expected unsupplied energy at various load levels 

(in percentages) 
Penetration level % 10 % 20 % 30 

 Slow Fast Slow Fast Slow Fast 

LO
LP

 

1 

%85 0.00081 0.00081 0.00083 0.00082 0.00086 0.00084 

%90 0.00167 0.00163 0.00175 0.00165 0.00184 0.00168 

%95 0.00544 0.00505 0.00529 0.00506 0.00536 0.00507 

2 

%85 0.00082 0.00082 0.00085 0.00085 0.00087 0.00087 

%90 0.00187 0.00187 0.00216 0.00215 0.00249 0.00247 

%95 0.00553 0.00553 0.00600 0.00600 0.00632 0.00629 

EE
N

S 

1 

%85 158.34029 157.36419 162.41795 160.46481 167.03972 164.10974 

%90 205.94852 204.29843 209.08356 205.56381 213.09863 207.43705 

%95 396.71956 375.93725 390.37591 377.02637 398.96287 378.25962 

2 

%85 160.88077 160.80423 167.35078 167.18895 174.18564 173.93146 

%90 213.26638 213.09636 224.88555 224.48871 238.21935 237.53162 

%95 404.96918 404.48007 437.82488 436.75410 472.96213 471.31908 

 
 

Table XI. The probability of loss of load index and 
expected unsupplied energy for the base power system 

(in percentages) 
EENS LOLP 

310.31593 0.00023 
 

 
Fig.9. LOLP index for EVs penetration scenarios with 
10, 20, and 30% at three load movement levels, second 

schemes, and EVs fast recharge. 
 

5. Analysis of results  
• Since the present study assumed the 10%, 20%, and 

30% penetration levels for EVs at three load shifting 
levels (85%, 90%, and 95%), the following results can 
be expressed: 

• EVs reduce the probability of a health state and 
increase the probability of marginal and risk states. 
With more significant penetration percentages or more 
EVs added to the system, the probability of risk mode 
increases while the reliability of the power system 
decreases. In other words, the following relationship 
holds in this study according to the assumed 
penetration levels:  

The probability of risk mode at 30% penetration level > 
Probability of risk mode at 20% penetration level > 
Probability of risk mode at 10% penetration level 

• According to the results, charging EVs during peak 
load reduces reliability much more than during mid-
peak load and low load. This leads to an increased 

probability of the risk state. Therefore, it is better to 
charge EVs during low and mid-peak loads.  

• Reduction or addition of load during peak loads has 
the most significant impact on the risk probability. In 
other words, charging the EVs during peak load can 
negatively affect system reliability. 
 
Probability of Risk in Scheme 2 > Probability of Risk 

in Scheme 1 
When the number of EVs charged at different times is 
determined, the speed of charging can have a different 
impact on system risk. The results show that the 
probability of risk for the system in slow charging mode 
is higher than in fast charging mode. 
 

 
Fig.10. EENS index for EVs penetration scenarios with 
10, 20, and 30% at three load movement levels, second 
scenario s, and EVs fast recharge. 
 
6. Conclusion 

This paper investigates the effects of EVs in power 
systems regarding penetration percentage, charging 
speed, time of charging speed, and various penetration 
schemes. The analyses show that adding EVs into HLII as 
new loads lead to an increase in the risk state in the power 
system. Therefore, demand-side management can be 
applied as an effective and inexpensive way to reduce the 
probability of risk mode without expanding facilities of 
the grid or transmission lines. The application of demand-
side management with load shifting technique in HLII 
showed that this method could maintain the penetration 
level of EVs and enhance the reliability level of the power 
system. 
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