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Fault detection and classification of brushless DC motors (BLDCM) is considered 

in this paper. A novel solution is introduced to diagnose multiple 

electromechanical faults that includes the stator inter-turn, the rotor dynamic 

imbalance, the rotor static imbalance, and different combinations of them. The 

current signal of the BLDCM is used together with the motor torque and the motor 

speed to achieve the classification of a wide range of defects. The fault features of 

the measured signals are extracted using packet wavelet transform (PWT). These 
features which include the energy, in the two modes of BLDCM operation: without 

load and with load, are used as input data for the radial basis function (RBF) neural 

network. Therefore, the designed algorithm maintains its efficiency in all operating 

conditions of the BLDCM. Besides, by the combination of the mentioned 

algorithms, the relationship between the fault types and different affected 

parameters of the measured signals are obtained more precisely. The neural 

network weights are updated by the particle swarm optimization (PSO) and the 

genetic algorithm (GA) that improve the convergence speed and provide better 

flexibility for local problems. Finally, the effectiveness of the proposed methods 

is validated by comparing the results obtained for different combinations of the 

neural networks and optimization methods. 
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1. Introduction 

BLDCM is found to be great choices in different 

applications due to their efficiency, reliability, higher 

lifetime, lower noise, and energy consumption. Different 

defects may happen in BLDCM which is due to 
electromechanical or electronic board faults. 

Electromechanical faults, in turn, are classified into stator, 

rotor and, magnetic defects. These defects may lead to 

important problems and reduce the ability, efficiency, or 

system safety. Accordingly, the fault detection problem in 

these motors is one of the main concerns of researchers.  

In recent years, a great amount of fault detection and 

isolation methods have been proposed for BLDCM that 

provide reliable health monitoring. Some researchers 
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proposed fault detection methods that are mainly based on 

system modelling [1, 2]; however, the fault detection 

accuracy depends on the accuracy of system modelling 

and the knowledge of system uncertainties. A different 

category of works named signal-based methods has been 

developed for condition monitoring of modules utilizing 

a measured crucial signal [3, 4].  

An important research category in BLDCM has relied 

on data driven methods. Specially, artificial intelligence 

techniques have been receiving extensive attention. These 

methods do not require precise modelling and are not 
directly dependent on the measured signal conditions. 

Regarding this issue, a technique based on the radial basis 

function (RBF) neural network was proposed for the 

bearing and stator inter-turn faults [5]. The authors in [6] 
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presented a method based on a self-organizing map neural 

network for stator winding fault detection.  

There are also hybrid methods that use the features of 

the signal processing approaches in combination with the 

artificial intelligence tools [7, 8]. The signal processing 

methods are adopted to obtain the fault features from the 

gathered data. These features are used as the input for 

machine learning classifiers like neural networks, fuzzy 

systems, or support vector machine (SVM) [9, 10]. Faults 
in BLDCM can cause extensive changes in different 

measurement signals, sometimes leading to complex 

relationship between the occurred faults and the affected 

parameters of these signals. Therefore, using the 

combination of features of the mentioned methods make 

it possible to obtain the above relationship more 

accurately. Papers [11] and [12] introduce bearing fault 

detection methods based on packet wavelet transform 

(PWT), the support vector machine (SVM) and the radial 

basis function (RBF) neural networks, respectively. 
    Some researchers have used different optimization 

algorithms to improve the efficiency and accuracy of 
intelligent methods. Some researchers have used PSO 

algorithm in order to improve neural network 

performance [13, 14]. Some researchers have introduced 

faults detection methods based on GA that improves 

performance of different kinds of neural networks [15, 16]. 

The other researchers have utilized grey wolf 

optimization (GWO) algorithm to improve accuracy of 

neural network classifiers [17, 18]. Although the reviewed 

methods have provided numerous and valuable features in 

the BLDCM fault detection and diagnosis, there are still 

some unresolved problems. In these methods, mainly one 
or a limited number of defects in the BLDCM have been 

covered and simultaneous occurrence of these defects is 

rarely considered. Besides, defects may occur in various 

loading conditions of motor that need to be predicted in 

advance. Also, all available and measurable signals are 

not used to classify defects more broadly.  

Accordingly, a novel data-driven method is suggested 

in this paper to detect multiple defects including the stator 

inter-turn, the rotor dynamic imbalance, the rotor static 

imbalance and simultaneous occurrence of them. Unlike 

conventional methods, which mainly use current or 
vibration signals; the current signal is used together with 

the motor torque and the motor speed signal to achieve 

separability in the feature spaces.  In the proposed method, 

the features of the aforementioned signals are extracted 

using the packet wavelet transform (PWT). These features, 

which include the energy in two modes of the BLDCM 

operation: without load and with load, serve as input to 

two types of neural networks, the radial basis function 

(RBF) neural network and the multilayer perceptron 

neural network. It is shown that the RBF neural network 

achieves more accurate classification results. To achieve 

a more effective performance, RBF weight coefficients 
are updated by the particle swarm optimization (PSO) and 

the genetic algorithm (GA) and then the results are 

compared.    

The main contributions of this paper are: (1) A novel 

solution for multiple fault diagnosis is proposed that is 

compatible with simultaneous occurrence of defects (2) 

Unlike conventional methods, which mainly use current 

or vibration signals; the current signal is used together 

with the motor torque and the motor speed signal which 

increases the ability to classify defects (3)The  introduced 

method can be applied in both fixed and variant BLDC 

motor load conditions (3) The data-driven based fault 

detection and classification method is presented  which 

does not require an accurate model of BLDC motor (4) 

The combination of data-driven method with optimization 

algorithms is introduced to achieve higher level of 

accuracy and performance of neural network (5) Packet 
wavelet transformation is used for feature extraction, 

which it is suitable for nonstationary signal analysis and 

does not require the use of any windows such as Fourier 

transformation. (7) The optimization algorithms are used 

to update the neural network weights that provide a quick 

and effective performance, better flexibility to local 

problems and more accurate results. 

The paper structure is as follows: Sect. 2, introduces 

the fault diagnosis method. At the beginning of this 

section, the BLDCM model is represented. After that, the 

(SIT), (RSI) and (RDI) faults model are introduced. Next, 

the PWT and feature extraction method are shown. At the 
end of this section, the RBF neural network with PSO and 

GA algorithms is represented. In Sect. 3, the simulation 

results of proposed method are introduced. This section 

includes features extraction and neural network training 

simulation results. The Performance validation of the fault 

diagnosis method is introduced at the end of this section. 

Finally, the paper is concluded in Sect. 4. 

 

2.  The Fault Diagnosis Method 

In this section, the design steps of the fault diagnosis 

method are described as shown in Fig. 1. In this figure, 
the BLDCM is simulated in different loading conditions 

in which several types of electromechanical faults are 

applied. The current, torque and speed signals of the 

BLDCM are measured and the features related to the 

above signals are extracted using the PWT.  These 

features, which include the energy in the two modes of the 

BLDCM operation: without load and with load, are given 

as inputs to the RBF neural network.  The neural network 

weighting coefficients are tuned by the PSO and the GA 

as optimization algorithms. As shown in Fig. 1, seven 

types of BLDCM faults are classified that include: stator 
inter-turn (SIT), rotor static imbalance (RSI), rotor 

dynamic imbalance (RDI), hybrid fault type 1 (SIT and 

RSI), hybrid fault type 2 (SIT and RDI), hybrid fault type 

3 (RSI and RDI) and finally hybrid fault type 4 (SIT, RSI 

and RDI).  

 

2.1. The BLDCM Model         
In the BLDCMs, unlike the DC motors in which the brush 

is tasked with making a mechanical contact with the 

commutator, the connection is formed using a set of 

windings beside the permanent magnet between the stator 

and the rotor. The relations described below have been 
extracted based on the model adopted from [19]. The 

Phase-to-phase voltages of the BLDCM are given as: 

𝑉𝑎𝑏 = 𝑅(𝑖𝑎 − 𝑖𝑏) + 𝐿
𝑑

𝑑𝑡
(𝑖𝑎 − 𝑖𝑏) + 𝐸𝑎 − 𝐸𝑏 

(1) 

𝑉𝑏𝑐 = 𝑅(𝑖𝑏 − 𝑖𝑐) + 𝐿
𝑑

𝑑𝑡
(𝑖𝑏 − 𝑖𝑐) + 𝐸𝑏 − 𝐸𝑐 

(2) 



116                      Citation information: DOI 10.48308/ijrtei.2022.102784, International Journal of Research and Technology in Electrical Industry 

IJRTEI., 2022, Vol.1, No. 2, pp. 114-124 
 

𝑉𝑎𝑐 = 𝑅(𝑖𝑎 − 𝑖𝑐) + 𝐿
𝑑

𝑑𝑡
(𝑖𝑎 − 𝑖𝑐) + 𝐸𝑎 −𝐸𝑐 

(3) 

where, the L parameter is defined as 𝐿 = ℓ − 𝑀. Also, R 

is the motor resistance, ℓ  is the self-inductance of the 

stator and M is the mutual inductance of the stator. 

𝑖𝑎  ꓹ𝑖𝑏 ꓹ𝑖𝑐  and 𝐸𝑎  ꓹ𝐸𝑏 ꓹ𝐸𝑐  are respectively, the stator 

currents and electromotive forces of phases a, b, and c. 

The mechanical equations of the BLDCM are as follows 

[20]:  

𝑇𝑒 − 𝑇𝑙 = 𝐽
𝑑2𝜃𝑚
𝑑𝑡2

+ 𝐵
𝑑𝜃𝑚
𝑑𝑡

 
(4) 

𝜃𝑒 =
𝒫𝑅𝑜𝑡𝑜𝑟
2

𝜃𝑚                 
(5) 

𝜔𝑚 =
𝑑𝜃𝑚
𝑑𝑡

 
(6) 

where, 𝑇𝑙 and 𝐽 are the load torque and the moment of 

inertia of the rotor, respectively. The notations 𝜃𝑚, B and 

𝒫𝑅𝑜𝑡𝑜𝑟  represent the rotor position, the damping factor, 

and the number of motor poles, respectively. 𝜔𝑚 

introduces the velocity of the rotor. The electrical torque 

of the BLDCM is given as: 

𝑇𝑒 = 𝐾𝑇 (𝐹(𝜃𝑒) 𝑖𝑎 + 𝐹 (𝜃𝑒 −
2𝜋

3
) 𝑖𝑏 + 𝐹 (𝜃𝑒 +

2𝜋

3
) 𝑖𝑐)  

(7) 

where, 𝐾𝑇 = 2𝑃𝑁𝑠𝐵𝑓𝑙𝑟  is the constant torque, 

 𝐹(𝜃) is a trapezoidal function that builds the trapezoidal 

flux density form, 𝑁𝑠 is the number of winding rounds in 

each stator phase, 𝐵𝑓 is the average number of air space 

and l and r are the length and radius of the rotor, 

respectively. The load torque of the BLDCM is 

introduced as follows: 

𝑇𝐿 = 𝑇𝐷𝐵 + 𝑇𝐷𝐹 (8) 

where, 𝑇𝐷𝐹  is the flywheel disturbance torque and 𝑇𝐷𝐵  

is the bearing disturbance torque, obtained from the sum 

of the coulomb and viscous frictions as follows: 

𝑇𝐷𝐵 = 𝑇𝑣𝑖𝑠𝑐𝑜𝑢𝑠𝑒 + 𝑇𝑐𝑜𝑢𝑙𝑜𝑚𝑏 = 𝐶𝑣𝜔𝑚 + 𝐶𝑐𝑠𝑖𝑔𝑛(𝜔𝑚)  (9)                                                                           

where 𝐶𝑣 and 𝐶𝑐 are viscous and coulomb friction 

coefficients, respectively. The back electromotive force 

on each phase of the stator windings is acquired as [21]: 

𝐸𝑎 = 𝐾𝑒𝜔𝑚𝐹(𝜃𝑒) (10) 

𝐸𝑏 = 𝐾𝑒𝜔𝑚𝐹 (𝜃𝑒 −
2𝜋

3
) 

(11) 

𝐸𝑐 = 𝐾𝑒𝜔𝑚𝐹 (𝜃𝑒 +
2𝜋

3
) 

(12) 

where, 𝐾𝑒  is the induction electromotive constant. 

After arranging the above relationships, the BLDCM 

space state model is obtained as follows: 

(

 
 
 
 
 
 

𝑑𝑖𝑎
𝑑𝑡
𝑑𝑖𝑏
𝑑𝑡
𝑑𝜔

𝑑𝑡
𝑑𝜃𝑚
𝑑𝑡 )

 
 
 
 
 
 

=

(

 
 
 
 

−𝑅

𝐿
0 0 0

0
−𝑅

𝐿
0  0

0
0

0
0

−𝐵

𝐽
1

0
0
)

 
 
 
 

(

𝑖𝑎
𝑖𝑏
𝜔𝑚
𝜃𝑚

)+ 

 

 

 

(13) 

(

 
 
 
 

2

3𝐿

1

3𝐿
0

−1

3𝐿

1

3𝐿
0

0
0

0
0

1

𝐽
0)

 
 
 
 

(
𝑉𝑎𝑏 − 𝐸𝑎𝑏
𝑉𝑏𝑐 − 𝐸𝑏𝑐
𝑇𝑒 −𝑇𝑙

) +𝐷𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒    

 

where 𝐸𝑎𝑏 = 𝐸𝑎 − 𝐸𝑏  , 𝐸𝑏𝑐 = 𝐸𝑏 −𝐸𝑐  and 

𝐷𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒  is disturbance. The current ic   is calculated 

from (14) as: 

𝑖𝑐 = −(𝑖𝑎 + 𝑖𝑏) (14) 

2.2. The Stator Inter-Turn Fault Model        

The stator faults form 28 % to 36 % of the motors 

faults [22]. Therefore, the issue of diagnosis of this defect 

is of particular importance. One of the causes of this 

defect, is the breakdown of the insulation between the 

rings. Fig. 2 shows how the stator winding loops can be 

shortened. It is assumed that the fault has occurred within 

the coil of phase a.  

 
Fig2. Short inter-turn fault modelled in a 3-phase 

stator [23] 

As shown in Fig. 2, as1 is the healthy part of winding 

whereas as2 is the shorted section of the winding. Also 𝑖𝑎 

and 𝑖𝑓 show respectively the stator current and the 

circulating current induced due to the short connection 

[24]. Fig. 3a shows the stator winding model in healthy 

condition whereas Fig. 3b shows stator winding in faulty 

condition.  

 

Fig1. Different steps of the proposed fault detection 

and classification method based on neural networks 
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Fig3. The considered model for healthy and faulty 

stator (a) the healthy 3-phase stator (b) the faulty 3-

phase stator 

 

In Fig.3, 𝐿𝑐 , 𝐿𝑏 , 𝐿𝑎 , 𝑅𝑐 , 𝑅𝑏 , 𝑅𝑎 ,  𝐸𝑐 , 𝐸𝑏 and 𝐸𝑎  are 
inductances, resistances and back EMF of related stator 

phases respectively; besides, all “R” and “L” are 

considered equal to each other. “𝑒𝑓” represents the back 

EMF obtained from the shorted circuit current; “μ” 

indicates the ratio of short-circuit turns to the whole 

number of turns in one phase. Also, 𝑟𝑠 represents short-

circuit impedance. In order to model the stator inter-turn 

short circuit, we must multiply the resistance and 

inductance of the healthy winding (Fig. 3a) into (1 − 𝜇) 
and (1 − 𝜇2) respectively. Due to the stator short circuit 
inter-turn fault, some harmonics in the BLDCM signals 

are created with the below frequencies [23]: 

𝑓𝑆𝐼𝑇 = (2𝑘 − 1)𝑓𝑓                                                          (15)                      

where, 𝑘 = 1,2,3…  and 𝑓𝑓  is the fundamental 

frequency. In this paper, 𝑓𝑓 is considered as 20Hz so, the 

stator short circuit inter-turn frequencies are 𝑓𝑆𝐼𝑇 =
20,60,100,140… . 

 

2.3. The Rotor Static and Dynamic Imbalance        

In an ideal machine, the rotor rotation axis is exactly 

matched to the stator symmetry axis and the length of the 

air gap is the same everywhere. Rotor imbalance or in 

other words, rotor eccentricity is an uneven air gap 

between the stator and the rotor. Rotor eccentricity can 

happen in two ways, dynamic eccentricity, and static 

eccentricity. By static eccentricity, the position of the 
minimum radial air gap does not change and remains 

constant, in other words when the stator symmetry 

axis, 𝑂𝑠  , separates from the rotor symmetry axis, 𝑂𝑟  , and 

the rotor rotation axis, 𝑂𝑤  , static eccentricity occurs. The 

reasons that cause static eccentricity include the ellipsoid 

shape of the current or incorrect rotor position [25]. The 

dynamic eccentricity occurs when the rotor centre is not 

on the rotating centre of the rotor and the radial air gap 

rotates, in other words, when the rotor symmetry axis, 𝑂𝑟 , 
separates from the stator symmetry axis, 𝑂𝑠 , and the rotor 

rotation axis, 𝑂𝑤  , dynamic eccentricity occurs. The main 

reasons for dynamic eccentricity are shafts bending, 

mechanical resonance at critical speeds and bearing 

exhaustion [25]. When all three axes include: 𝑂𝑟 ,𝑂𝑠 ,𝑂𝑤   

are separate from each other, the eccentricity is called the 

mixed eccentricity (static and dynamic eccentricity). 

Fig.4a illustrates the static eccentricity while Fig.4b and 

Fig.4c illustrate the dynamic and mixed eccentricities, 

respectively.  

 

Fig4. The rotor dynamic and static imbalance 

faults (a) Static eccentricity (b) Dynamic eccentricity 

(c) Mixed eccentricity [26]. 

 

Eccentricities can be modelled according to the following 

relationships [27]: 

𝐅𝐬 = 𝐷𝑠𝜔𝑊
2 𝑠𝑖𝑛(𝜔𝑊 ∗ 𝑡) (16) 

𝐓𝐃𝐅𝐒 = 𝑅𝑊 × 𝐅𝐬 (17) 

𝐓𝐃𝐅𝐃 = 𝐷𝑑𝜔𝑊
2 𝑠𝑖𝑛(𝜔𝑊 ∗ 𝑡) (18) 

where, t is time, 𝑅𝑊  is the wheel distance from the 

center of mass, 𝐷𝑠 is the static disturbance coefficient, 𝐷𝑑 

is the dynamic disturbance coefficient, 𝜔𝑊  is the wheel 

speed, 𝐓𝐃𝐅𝐒 and 𝐓𝐃𝐅𝐃  are disturbance torques due to the 

static and dynamic eccentricity, respectively. Due to the 

static and dynamic eccentricities, some harmonics in the 

BLDCM signals are built with the below frequencies [28]: 

𝑓𝐷𝑦𝑛𝑎𝑚𝑖𝑐 = 𝑓𝑓 (1 ±
𝑘

𝒫𝑃𝑜𝑙𝑒𝑠
2⁄
) 

(20) 

𝑓𝑆𝑡𝑎𝑡𝑖𝑐 = 𝑓𝑓 ± 𝑘𝑓𝑟 (21) 

𝑓𝑟 =
𝜔𝑟
60

 (22) 

where, 𝑘 = 1,2,3… and 𝒫𝑃𝑜𝑙𝑒𝑠 is the number of motor 

poles. 𝑓𝑟  and 𝜔𝑟  are rotor frequency and speed, 

respectively. In this paper, The BLDCM has 6 poles with 

𝜔𝑟 = 41.86 𝑟𝑎𝑑 𝑠𝑒𝑐⁄  desired rotor speed. 

 
2.4. The Packet Wavelet Transform         

Packet wavelet transform (PWT), is one of the 

methods of signal analysis in time-frequency domain. In 

this type of wavelet, in contrast to discrete wavelet 

transform which only approximate coefficients pass 

through low and high pass filters, both approximate (app.)  

and detail (det.) coefficients are passed through these 

filters for each step [29]. Fig. 5 shows how this type of 

wavelet works.  

For p levels of decomposition, the PWT 

produces  2𝑝  different sets of coefficients called nodes. 
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The wavelet packet function can be introduced as follows 

[30]: 

𝑊𝑝,𝑘
𝑚 (𝑡) = 2

𝑝
2𝑊𝑚(2𝑝𝑡 − 𝑘) (22) 

 

where, m and k are operation modulation parameter 

and translation operations, respectively. PWT coefficients 

can be calculated according to the following relation: 

𝑤𝑝,𝑘
𝑚 (𝑡) = 〈𝑓(𝑡),𝑊𝑝.𝑘

𝑚 〉 = ∫𝑓(𝑡)𝑊𝑝,𝑘
𝑚 (𝑡)𝑑𝑡 

(23) 

where, 𝑓(𝑡) is main signal and operation 〈𝑓(𝑡),𝑊𝑝.𝑘
𝑚 〉 

shows inner product of main signal and wavelet packet 

function. The nodes frequency intervals can be 

represented as below [30]:  

((𝑚 − 1)2−𝑝−1𝑓𝑠 ,𝑚2
−𝑝−1𝑓𝑠] (24) 

where,  𝑓𝑠  is sampling frequency. For example, for 2 

level of decomposition 22 = 4 nodes are created and  𝑤2
0 

shows the 0th node in second level of decomposition. This 

node has (0,
𝑓𝑠

8
] frequency band. In the next section, the 

feature extraction using the mentioned coefficients are 

described. 

 

2.5. Feature Extraction Using the Packet Wavelet 

Transform        

PWT continues decomposition until a level where the 
frequency band of PWT coefficients consist of faults 

frequencies. PWT is applied to current, speed and torque 

signals of BLDCM in 4 different load conditions include: 

No-load (NL), Half-load (HL), Full-load (FL) and 

Decreased-load (DL). In this paper, the decomposition 

level is 13 and 213 nodes can be produced for each signal 

in 4 different load conditions so 𝑝 = 13  and 𝑚 =
0,1,2… 213 − 1. Five nodes which includes: 𝑤11

0 , 𝑤12
0 , 

𝑤13
0 , 𝑤13

1  and  𝑤13
2  are selected for feature extraction for 

each signal. Frequency band of these nodes consist fault 

frequencies. Energy of mentioned nodes in 4 different 

load conditions and 8 different fault conditions for each 

signal is selected as features and these features are given 

as input to the neural network for faults classify. The 

energy of mentioned nodes is calculated as follows [31]: 

𝐸𝑝
𝑚 =∑(𝑤𝑝

𝑚(𝑘))
2

𝑘

 
(25) 

   2.6. Radial Basis Function with Particle Swarm 

Optimization Algorithm        

Particle swarm optimization is one of the evolutionary 

algorithms for optimization of different problems. This 

algorithm, is inspired by natural processes such as: mass 

migration of birds or mass movements of fishes. In this 

algorithm, a set of particles in the possible response space 

of the optimization function will start. Every particle in 

this space has a velocity and a position. Each particle, 

while remembering its best position in the space of 

response, sends its best position to the other particles and 
the other particles move toward that particle. At each 

iteration of this algorithm, the particles compare their 

current position with their best positions,𝑃𝑏𝑒𝑠𝑡 , and if the 

current value is better than 𝑃𝑏𝑒𝑠𝑡  , it is replaced by 𝑃𝑏𝑒𝑠𝑡 . 
By comparing the best position of each particle together, 

the best team position,  gbest  is updated. The following 

relationships are used to update the position and speed of 

each particle [32]: 

𝑣𝑗(𝑡 + 1) = 𝜔𝑣𝑗(𝑡) + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡,𝑗(𝑡) − 𝑝𝑗(𝑡)) 

+𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡,𝑗(𝑡) − 𝑝𝑗(𝑡)) 

(26) 

𝑝𝑗(𝑡 + 1) = 𝑝𝑗(𝑡) + 𝑣𝑗(𝑡 + 1) (27) 

where, 𝑝𝑗(𝑡) and 𝑣𝑗(𝑡) are the position and velocity of 

the ith particle at the moment t, respectively, 𝜔  is the 

inertia coefficient, 𝑐1 , 𝑐2    are learning coefficients and 

𝑟1  and 𝑟2  are two positive parameters with values lower 

than one.     

RBF neural networks are actually three-layer 

feedforward networks. In these networks, hidden layer 

neurons perform a set of radial basis functions while the 

output neurons have linear activating functions. Fig. 6 

shows the structure of these networks. 

 

Fig6. RBF neural network structure with radial 

basis activation function [33] 

 

As described in the previous section, the energy of the 

mentioned PWT coefficients (𝐸𝑝
𝑚)  in 4 different load 

conditions and 7 different fault conditions are given as 

input to the RBF neural network. RBF neural networks 

are based on supervised learning and its training algorithm 

can be divided into two phases: 1-Set the input layer 

weights to the hidden layer. 2-Set the hidden layer weights 

to the output layer. 

In this paper, the RBF neural network can classify 7 

different BLDCM faults. In healthy condition the RBF 

output shows number 1 while if it shows numbers 2, 3, 4, 
5, 6, 7 and 8 it means that the BLDCM has RSI, SIT, RDI, 

Hybrid Fault 1, Hybrid Fault 2 and Hybrid Fault 3, 

respectively. Also, the RBF neural network output is 

calculated from the following equation: 

 
Fig5. Packet wavelet transform tree at 3 levels 

with approximate and detail nodes. 
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𝑦𝑖 =∑𝑤𝑖𝑗

𝑚

𝑗=1

𝑡𝑎𝑛ℎ ( |𝑥 − 𝑠𝑗|
2
) 

(28) 

As mentioned in section 2.5, 𝑥 is neural network inputs 

vector. 𝑤𝑖𝑗  and 𝑠𝑗  are the hidden layer output weights and 

hidden layer centre points, respectively. 

Multilayer perceptron (MLP) is feedforward neural 

network and another kind of supervised learning. This 

type of neural network has at least one hidden layer and 

one output layer. The MLP neural network output can be 

computed as follows: 

𝑦𝑖 = 𝑓(∑𝑤𝑖𝑗
𝑇

𝑁

𝑗=1

𝑥𝑗 + 𝑏𝑖) 

(29) 

where, 𝑥𝑗  is neural network inputs vector. 𝑤𝑖𝑗, 𝑏𝑖 and 

f are the weights between the input number i and neuron 

number j, bias and hidden layer activation function, 
respectively. 

In this paper, PSO algorithm is used to optimize the 

RBF neural network weights as shown in Fig.7.  

 

 

Fig7. Block diagram of the RBF which weights 
updated with the PSO algorithm 

As shown in Fig. 7, y and target are the RBF neural 

network output and the real class of inputs, respectively. 

The PSO optimization function is introduced as: ∑(𝑦 −
𝑡𝑎𝑟𝑔𝑒𝑡)2. PSO algorithm based on equations (26) and (27) 

finds  gbest  or best team position and it is used as RBF 

weights. 

 

2.7. Radial Basis Function with Genetic Algorithm         

Genetic algorithm is one of the meta-heuristic 

algorithms in optimal solution of different problems. This 

algorithm solves the optimization problems with the 
inspiration of nature and the formation of living 

organisms and converting these organisms into an optimal 

population. The general structure of the algorithm is 

shown in Fig. 8. 

 

Fig8. Different steps of genetic algorithms 

 

According to the above diagram, a number of 

population elements find the opportunity to reproduce. 

Those elements chosen are called parents. In the crossover 

process, portions of the chromosomes are replaced and 

this makes children share their parent characteristics so 

children are different from their parents. This process goal 

is produce a new child with good qualities of its parents 

in order to produce a better creature. In the mutation 

process, a chromosome number is randomly chosen and 

then the values of one or more genes are changed. The 

mutation process produces a new population and it 
replaces with the previous population. The GA algorithm 

is repeated enough to achieve an optimal solution.  

Function ∑(𝑦 − 𝑡𝑎𝑟𝑔𝑒𝑡)2  is used as optimization 
function for GA algorithm. Where, y and target are RBF 

neural network output and real class of RBF neural 

network inputs, respectively. GA algorithm starts to find 

optimal solution for mentioned optimization function. 

The GA algorithm optimal solution is used as RBF neural 

network weights. 

  

3. Simulation Results 

In this section, the effectiveness of the proposed 

algorithms is validated. Fig. 9 shows the current 
signal of BLDC motor in healthy, stator inter-turn, 

static rotor imbalance, and dynamic rotor imbalance 

faults.  

Fig9. The BLDC current in three faulty states 

(stator inter-turn, rotor static imbalances, and rotor 

dynamic imbalances) and healthy mode 
 

For this purpose, the parameters for the BLDCM are 

considered as shown in Table I. Also, the selected 

parameters for the PSO and GA are represented in Table 

II and Table III, respectively. 
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Table I. The parameters of the BLDC motor 

MATLAB model 

Parameter Value 

Phase resistor 8𝛺 
Phase inductance 2 × 10−3𝐻 
Phase inductance 0.66 × 10−3𝑘𝑔.𝑚2 

Damping coefficient 2
× 10−5𝑁.𝑚. 𝑠/𝑟𝑎𝑑 

Induction electromotive 

coefficient 
2𝑁.𝑚/𝐴 

BLDC motor torque 
coefficient 

13.689
× 10−3𝑁.𝑚/𝐴 

Coulomb friction coefficient 10−4𝑁.𝑚 
Viscous friction coefficient 2

× 10−5𝑁.𝑚. 𝑠/𝑟𝑎𝑑 
Sampling time 5 × 10−6𝑠 

Dynamic imbalance 

disturbance coefficient 
3.6 × 10−9 

Static imbalance disturbance 

coefficient 
9.2 × 10−9 

Short-circuit impedance 9 × 10−3𝛺 

 

 

Table II. The parameter related to the PSO algorithm 

Value Parameter 

100 

0 

1 
1.5 

2.0 

10−20 

Population Size (Swarm Size) 
Inertia Weight 

Inertia Weight Damping Ratio 
Personal Learning Coefficient 
Global Learning Coefficient 

The Minimum Error 

 

Table III. The parameter related to the GA algorithm 

 

In the following, after explaining the different steps of 

feature extraction and neural network training, some test 

scenarios are considered for evaluating the designed 
algorithms. 

 

3.1. Feature Extraction        

By examining the Simulink model represented in Fig. 

1, the current, electromechanical torque and speed signals 

are obtained in seven different fault scenarios. The energy 

features of the five selected nodes are extracted by the 

PWT (relation (23)). The large number of features (213 +
212 +⋯+ 21 ), for motor current, electromechanical 
torque and motor speed for each one of the BLDCM 

conditions including healthy, SIT, RSI, RDI, SIT and RSI, 

SIT and RDI, RSI and RDI and finally SIT, RSI and RDI 

in 3 different load levels include: No-load (NL), Half-load 

(HL), Full-load (FL) are considered. 

These data are used as training and testing data for the 
neural network classifier, that is, 15 data sets for each of 

the motor conditions and for several load levels (NL, HL, 

FL). In general, there are 480 number of datasets, which 

60 % of them are used for neural network training and 40 % 

of them are used for neural network testing.  

   

3.2. Neural Network Training         

As mentioned above, 1500 data sets have been 

intended for training the neural network in each of the 

BLDCM conditions. The RBF and MLP neural networks 

are evaluated to determine the best performance for fault 

diagnosis. Each neural network is developed with 3 

neurons in the input layer, 1 neuron in the output layer and 

different neurons in the hidden layer. Fig. 10 shows the 
neural networks performance for different numbers of 

hidden neurons.  

 

Fig10 Neural networks performance for different neurons 

in hidden layer 

 

As shown, the best performance of the RBF neural 

network is provided when the numbers of nodes in the 

hidden layer is 60 that achieves the mean square error 
(MSE) of 0.0930048. Also, 60 nodes in the hidden layer 

are required to provide the mean square error (MSE) of 

1.6571 for the MLP neural network. Therefore, better 

performance for the data training step is obtained for the 

RBF neural network. 

In order to achieve the best classification performance 

of the neural network, it is also required to obtain the most 

suitable parameters for the optimization algorithms, 

namely the PSO and the GA. To illustrate the impact of 

inertia weight, personal and general learning coefficients 

and inertia rate damping ratio for the PSO algorithm, the 

results for 4 different load conditions are represented in 
Table IV. In this table, Inertia Weight, Global Learning 

Coefficient, and Inertia Rate Damping Ratio named as IW, 

GLC, and IRDR for abbreviate purposes. In this table, the 

resulted MSE obtained for different values of PSO 

parameters have been illustrated. By consideration the 

mentioned factors, the values 0, 1.5, 2 and 1 are chosen 

respectively for inertia weight, personal and general 

learning coefficients and inertia rate damping ratio.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Value Parameter 

[-1,1] 
0 

10−20 

Initial Population Range 
Fitness Limit 

The Minimum Error 
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Table IV. PSO-RBF parameters Comparison based on 

MSE 

 

According to Table V, the value [0;1] chosen for the 

initial population range parameter in the GA result in the 

most appropriate performance. To illustrate the impact of 

inertia weight, personal and general learning coefficients 
and inertia rate damping ratio for the PSO algorithm, the 

results for 4 different load conditions based on 

convergence time are represented in Table V.  

 

 

Table V. PSO-RBF parameters Comparison based on 

Convergence Time 

 

 

 

 

 

 

 

 

Table VI. GA-RBF parameter Comparison 

 

According to Table VI, the value [0;1] chosen for the 

initial population range parameter in the GA result in the 

most appropriate performance.  

As shown in these tables, the best performance is 
achieved by combination of RBF neural network and the 

PSO algorithm. In the next section, the aforementioned 

combination of algorithms is further evaluated using 

different test data.        

 

3.3. Performance Validation of The Fault Diagnosis 

Method         

In this section, the results of the diagnostic algorithm 

for the validation stage are illustrated. For this purpose, 

the following test scenarios are selected considering 

different conditions of the BLDCM:   

 

 Case 1: Static imbalance starts at time t=2. 

 Case 2: Stator inter-turn, static and dynamic 

imbalances occur simultaneously at time t= 7 with 

μ = 0.75. 

 

Case 1 
The results of the fault diagnosis for the PSO- RBF 

and the GA-RBF methods are shown in Table VII. As 

indicated in this table, the investigated networks achieve 

acceptable MSE and convergence time in different 
loading levels. However, the better value of performance 

is obtained by the PSO that provides more accurate results 

in less convergence time. 

 

Table VII. The obtained MSE and convergence time of 

the proposed methods in Case 1 

 

Case 2 

The results of the fault diagnosis for the PSO- RBF 

and the GA-RBF methods are shown in Table VIII. 

GA-RBF 

Parameters 

Initial Population Range 

 [0; 1] [−1; 1] [−5; 5] [−10; 10] 
 

MSE (×
10−4) 
 

 
 

 

Convergence 

Time 

(Iteration) 

 

NL 

HL 

FL 

DL 

 

NL 
HL 

FL 

DL 

 

0.120 

0.227 

0.360 

6.946 

 

0.160 
0.217 

0.345 

5.496 

 

0.137 

0.354 

1.730 

9.517 

 

348 
400 

648 

579 

 

0.356 

0.957 

1.890 

12 

 

508 
551 

631 

571 

 

0.160 

0.217 

0.345 

5.496 

 

465 
307 

545 

566 

PSO-RBF 

Parameters 
MSE (× 10−22) 

 NL 

6.635 

9.047 

9.985 

11.30 

 

6.429 
 

5.342 

 

- 

 

 

5.593 

4.670 

3.081 

HL 

2.525 

4.717 

6.695 

7.683 

 

4.171 
 

3.026 

 

- 

 

 

4.992 

3.307 

2.878 

FL 

1.221 

4.504 

5.437 

6.894 

 

2.601 
 

2.058 

 

- 

 

 

2.764 

2.441 

2.071 

DL 

7.465 

9.748 

10. 44 

11.96 

 

8.488 
 

6.945 

 

- 

 

 

6.135 

5.611 

4.403 

 

 

IW 

 

 

 

 

 
GLC 

 

 

 

 

IRDR 

𝑤𝑃𝑆𝑂 = 0 

𝑤𝑃𝑆𝑂 = 1 

𝑤𝑃𝑆𝑂 = 2 

𝑤𝑃𝑆𝑂 = 5 
 

{
𝑐1 = 2
𝑐2 = 2

 

{
𝑐1 = 1.5
𝑐2 = 2

 

{
𝑐1 = 2.8
𝑐2 = 1.3

 

 

𝑤𝐷𝑎𝑚𝑝= 

0.5 

𝑤𝐷𝑎𝑚𝑝= 

0.99 

𝑤𝐷𝑎𝑚𝑝= 1 

PSO-RBF 

Parameters 

Convergence Time 

 NL 

55 

154 

225 

319 

 

60 

 

56 

 
- 

 

 

56 

56 

54 

HL 

56 

156 

226 

317 

 

65 

 

57 

 
- 

 

 

55 

57 

53 

FL 

58 

161 

225 

319 

 

72 

 

55 

 
- 

 

 

56 

59 

54 

DL 

59 

157 

224 

316 

 

63 

 

55 

 
- 

 

 

53 

58 

56 

 

 

IW 

 

 

 

 

 

GLC 

 

 
 

 

IRDR 

𝑤𝑃𝑆𝑂 = 0 

𝑤𝑃𝑆𝑂 = 1 

𝑤𝑃𝑆𝑂 = 2 

𝑤𝑃𝑆𝑂 = 5 
 

{
𝑐1 = 2
𝑐2 = 2

 

{
𝑐1 = 1.5
𝑐2 = 2

 

{
𝑐1 = 2.8
𝑐2 = 1.3

 

 

𝑤𝐷𝑎𝑚𝑝= 0.5 

𝑤𝐷𝑎𝑚𝑝= 

0.99 

𝑤𝐷𝑎𝑚𝑝= 1 

Algorithms  PSO-RBF GA-RBF 

 

MSE (× 𝟏𝟎−𝟗) 
 

 

 

 

Convergence 

Time (Iteration) 

NL 

HL 

FL 

DL 

 
NL 

HL 

FL 

DL 

0.14603 

9.3679 

117.78 

1.4972 

 
65 

85 

80 

78 

5445 

250400 

525.2578 

11273 

 
235 

285 

595 

319 
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According to this table, acceptable performance is 

achieved again by the proposed algorithms. However, the 

convergence time of the PSO- RBF is less, while it obtains 

better MSE results. 

 

 

 

Table VIII. The obtained MSE and convergence time of 

the proposed methods in Case 2 
 

 

The results indicated an acceptable performance with 

high classification accuracy that is attributed to the 

selected signals for measurement and the approach used 
to extract the features. In order to show the effectiveness 

and accuracy of the proposed method for seven different 

faults detection and classification, Fig. 11 shows the 

accuracy and percentage of false classification with 

confusion matrix. 

 

 
Fig 11 Confusion matrix that compare the results of fault 

detection in healthy and seven different faulty modes of 

BLDC motor 

 

In healthy condition the true class shows number 1 while 

if it shows numbers 2, 3, 4, 5, 6, 7 and 8 it means that the 

BLDCM has static rotor eccentricity, stator inter-turn, 

dynamic rotor eccentricity, simultaneous occurrence of 

stator inter-turn and static rotor eccentricity, simultaneous 

occurrence of stator inter-turn and dynamic rotor 

eccentricity, simultaneous occurrence of static rotor 
eccentricity and dynamic rotor eccentricity and 

simultaneous occurrence of all mentioned faults, 

respectively. Consequently, the classification strategy 

based on the proposed methods resulted in an acceptable 

degree of generalization. For more comparison, Fig. 12 

compares the accuracy obtained by the proposed method 

(PSO-RBF) with work done in [34] for BLDCM in SIT 

fault condition. In  [34], the discreet wavelet transform 

(DWT) has been used as feature extraction and the multi-

layer perceptron (MLP) neural network has been 

introduced as classifier in order to detect stator inter-turn 

short circuit fault. The energy Eigen value of 3 phases 
motor stator current in different fault and load conditions 

is used as MLP neural network inputs. The MLP neural 

network is trained by back propagation (BP) algorithm.  

 

 
(a) 

 
(b) 

Fig 12 (a) Confusion matrixes for proposed 

method (b) Confusion matrixes for the work done in 

[34] 
 

As shown in Fig. 12, confusion matrix for the 

presented method and the work done in paper [34] 

shown in part (a) and (b), respectively. For better 

comparison, both confusion matrices are shown for 

stator inter-turn fault. In confusion matrix (a), test data 

include 48 data while, test data for confusion matrix 

(b) include 16 data. As shown in this figure, better 

performance of the proposed method is established 

compared to the mentioned related method.  Utilizing 

radial basis function neural network has many 

advantages that mentioned before, however, it has still 

Algorithms  PSO-RBF GA-RBF 

 

MSE (× 𝟏𝟎−𝟔) 
 

 

 

 

Convergence 

Time (Iteration) 

NL 

HL 

FL 

DL 

 

NL 

HL 

FL 

DL 

0.021564 

0.064532 

0.088965 

0.067658 

 

49 

72 

48 

106 

8.2230 

26.261 

2.5686 

54.714 

 

609 

377 

382 

251 
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problems in order to determine the hyper-parameters 

such as the number of hidden layers and the number 

of nodes in each layer. Furthermore, the proposed 

method is based on data-driven methods and it 

requires data sets in order to train the radial basis 

function neural network. 

According to the authors experiences, this work can 

be improved by utilizing different ideas: In order to 

tackle with determining the hyper-parameters of 

neural networks, increase the number of hidden layers 

of neural network and use deep neural network can be 

a good solution for the future works. In addition, 

increasing the performance and efficiency of the deep 

neural network by tackling missing data and big noises 

problems can improved the accuracy of fault 

classification method. Besides, collecting the training 

data from real time prototype which will need some 

pieces of equipment such as high accuracy sensors, 

obtaining an accurate nonlinear model of the BLDC 

motor by using neural networks, considering different 

variant load conditions in the simulation scenarios, 

and the experimental validation of the total method 

would be great suggestions for future works. 

 

4. Conclusion 

In this article, a fault diagnosis method is proposed to 

classify multiple faults of different BLDCM conditions 

(SIT, RSI and RDI). The current signal was considered 

together with the electromechanical torque and motor 

speed as diagnostic media. The above measurements were 

used to extract energy features by the PWT and it was 

shown that an acceptable isolation capability is achieved. 

The extracted features for different BLDCM conditions 

and loading levels serve as inputs for the neural network-

based classifiers. Also, the PSO and GA were suggested 

as optimization methods to update the neural networks 

weightings. It was shown that the convergence time of 

RBF-PSO is less, while it achieves more accurate results. 

For further evaluation of the proposed method, some test 

cases were considered. It was confirmed that the designed 

algorithm is effective that gives the required classification 

accuracy with acceptable convergence time.  Therefore, 

the developed diagnosis features and the considered 

combination of neural networks with the PWT approach 

allow multiple diagnosis of BLDCM faults that occur in 

different operating conditions. The paper can be improved 

by considering the BLDC motor in different variant load 

mode in order to enhance the performance of the method 

in the future works and propose the fault detection and 

classification method which can be used in indifferent 

variant load conditions. 
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