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Fault detection and classification of brushless DC motors (BLDCM) is considered 
in this paper. A novel solution is introduced to diagnose multiple 
electromechanical faults that includes the stator inter-turn, the rotor dynamic 
imbalance, the rotor static imbalance, and different combinations of them. The 
current signal of the BLDCM is used together with the motor torque and the motor 
speed to achieve the classification of a wide range of defects. The fault features of 
the measured signals are extracted using packet wavelet transform (PWT). These 
features which include the energy, in the two modes of BLDCM operation: without 
load and with load, are used as input data for the radial basis function (RBF) neural 
network. Therefore, the designed algorithm maintains its efficiency in all operating 
conditions of the BLDCM. Besides, by the combination of the mentioned 
algorithms, the relationship between the fault types and different affected 
parameters of the measured signals are obtained more precisely. The neural 
network weights are updated by the particle swarm optimization (PSO) and the 
genetic algorithm (GA) that improve the convergence speed and provide better 
flexibility for local problems. Finally, the effectiveness of the proposed methods 
is validated by comparing the results obtained for different combinations of the 
neural networks and optimization methods. 
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1. Introduction 

BLDCM is found to be great choices in different 
applications due to their efficiency, reliability, higher 
lifetime, lower noise, and energy consumption. Different 
defects may happen in BLDCM which is due to 
electromechanical or electronic board faults. 
Electromechanical faults, in turn, are classified into stator, 
rotor and, magnetic defects. These defects may lead to 
important problems and reduce the ability, efficiency, or 
system safety. Accordingly, the fault detection problem in 
these motors is one of the main concerns of researchers.  

In recent years, a great amount of fault detection and 
isolation methods have been proposed for BLDCM that 
provide reliable health monitoring. Some researchers 
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proposed fault detection methods that are mainly based on 
system modeling [1, 2]; however, fault detection accuracy 
depends on the accuracy of system modeling and the 
knowledge of system uncertainties. A different category 
of works named signal-based methods has been 
developed for condition monitoring of modules utilizing 
a measured crucial signal [3, 4].  

An important research category in BLDCM has relied 
on data-driven methods. Specially, artificial intelligence 
techniques have been receiving extensive attention. These 
methods do not require precise modeling and are not 
directly dependent on the measured signal conditions. 
Regarding this issue, a technique based on the radial basis 
function (RBF) neural network was proposed for the 
bearing and stator inter-turn faults [5]. The authors in [6] 
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presented a method based on a self-organizing map neural 
network for stator winding fault detection.  

There are also hybrid methods that use the features of 
the signal processing approaches in combination with the 
artificial intelligence tools [7, 8]. The signal processing 
methods are adopted to obtain the fault features from the 
gathered data. These features are used as the input for 
machine learning classifiers like neural networks, fuzzy 
systems, or support vector machine (SVM) [9, 10]. Faults 
in BLDCM can cause extensive changes in different 
measurement signals, sometimes leading to complex 
relationship between the occurred faults and the affected 
parameters of these signals. Therefore, using the 
combination of features of the mentioned methods make 
it possible to obtain the above relationship more 
accurately. Papers [11] and [12] introduce bearing fault 
detection methods based on packet wavelet transform 
(PWT), the support vector machine (SVM) and the radial 
basis function (RBF) neural networks, respectively. 

    Some researchers have used different optimization 
algorithms to improve the efficiency and accuracy of 
intelligent methods. Some researchers have used PSO 
algorithm in order to improve neural network 
performance [13, 14]. Some researchers have introduced 
faults detection methods based on GA that improves 
performance of different kinds of neural networks [15, 16]. 
The other researchers have utilized grey wolf 
optimization (GWO) algorithm to improve accuracy of 
neural network classifiers [17, 18]. Although the reviewed 
methods have provided numerous and valuable features in 
the BLDCM fault detection and diagnosis, there are still 
some unresolved problems. In these methods, mainly one 
or a limited number of defects in the BLDCM have been 
covered and simultaneous occurrence of these defects is 
rarely considered. Besides, defects may occur in various 
loading conditions of motor that need to be predicted in 
advance. Also, all available and measurable signals are 
not used to classify defects more broadly.  

Accordingly, a novel data-driven method is suggested 
in this paper to detect multiple defects including the stator 
inter-turn, the rotor dynamic imbalance, the rotor static 
imbalance and simultaneous occurrence of them. Unlike 
conventional methods, which mainly use current or 
vibration signals; the current signal is used together with 
the motor torque and the motor speed signal to achieve 
separability in the feature spaces.  In the proposed method, 
the features of the aforementioned signals are extracted 
using the packet wavelet transform (PWT). These features, 
which include the energy in two modes of the BLDCM 
operation: without load and with load, serve as input to 
two types of neural networks, the radial basis function 
(RBF) neural network and the multilayer perceptron 
neural network. It is shown that the RBF neural network 
achieves more accurate classification results. To achieve 
a more effective performance, RBF weight coefficients 
are updated by the particle swarm optimization (PSO) and 
the genetic algorithm (GA) and then the results are 
compared.    

The main contributions of this paper are: (1) A novel 
solution for multiple fault diagnosis is proposed that is 
compatible with simultaneous occurrence of defects (2) 
Unlike conventional methods, which mainly use current 
or vibration signals; the current signal is used together 

with the motor torque and the motor speed signal which 
increases the ability to classify defects (3)The  introduced 
method can be applied in both fixed and variant BLDC 
motor load conditions (3) The data-driven based fault 
detection and classification method is presented  which 
does not require an accurate model of BLDC motor (4) 
The combination of data-driven method with optimization 
algorithms is introduced to achieve higher level of 
accuracy and performance of neural network (5) Packet 
wavelet transformation is used for feature extraction, 
which it is suitable for nonstationary signal analysis and 
does not require the use of any windows such as Fourier 
transformation. (7) The optimization algorithms are used 
to update the neural network weights that provide a quick 
and effective performance, better flexibility to local 
problems and more accurate results. 

The paper structure is as follows: Sect. 2, introduces 
the fault diagnosis method. At the beginning of this 
section, the BLDCM model is represented. After that, the 
(SIT), (RSI) and (RDI) faults model are introduced. Next, 
the PWT and feature extraction method are shown. At the 
end of this section, the RBF neural network with PSO and 
GA algorithms is represented. In Sect. 3, the simulation 
results of proposed method are introduced. This section 
includes features extraction and neural network training 
simulation results. The Performance validation of the fault 
diagnosis method is introduced at the end of this section. 
Finally, the paper is concluded in Sect. 4. 

 
2.  The Fault Diagnosis Method 

In this section, the design steps of the fault diagnosis 
method are described as shown in Fig. 1. In this figure, 
the BLDCM is simulated in different loading conditions 
in which several types of electromechanical faults are 
applied. The current, torque and speed signals of the 
BLDCM are measured and the features related to the 
above signals are extracted using the PWT.  These 
features, which include the energy in the two modes of the 
BLDCM operation: without load and with load, are given 
as inputs to the RBF neural network.  The neural network 
weighting coefficients are tuned by the PSO and the GA 
as optimization algorithms. As shown in Fig. 1, seven 
types of BLDCM faults are classified that include: stator 
inter-turn (SIT), rotor static imbalance (RSI), rotor 
dynamic imbalance (RDI), hybrid fault type 1 (SIT and 
RSI), hybrid fault type 2 (SIT and RDI), hybrid fault type 
3 (RSI and RDI) and finally hybrid fault type 4 (SIT, RSI 
and RDI).  

 
2.1. The BLDCM Model         
In the BLDCMs, unlike the DC motors in which the brush 
is tasked with making a mechanical contact with the 
commutator, the connection is formed using a set of 
windings beside the permanent magnet between the stator 
and the rotor. The relations described below have been 
extracted based on the model adopted from [19].  The 
Phase-to-phase voltages of the BLDCM are given as: 

𝑉!" = 𝑅(𝑖! − 𝑖") + 𝐿
𝑑
𝑑𝑡
(𝑖! − 𝑖") + 𝐸! − 𝐸"	

(1) 

𝑉"# = 𝑅(𝑖" − 𝑖#) + 𝐿
𝑑
𝑑𝑡
(𝑖" − 𝑖#) + 𝐸" − 𝐸#	

(2) 
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𝑉!# = 𝑅(𝑖! − 𝑖#) + 𝐿
𝑑
𝑑𝑡
(𝑖! − 𝑖#) + 𝐸! − 𝐸#	

(3) 

where, the L parameter is defined as 𝐿 = ℓ −𝑀. Also, R 
is the motor resistance, ℓ  is the self-inductance of the 
stator and M is the mutual inductance of the stator. 
𝑖!	ꓹ𝑖"	ꓹ𝑖#  and 𝐸!	ꓹ𝐸"	ꓹ𝐸#  are respectively, the stator 
currents and electromotive forces of phases a, b, and c. 
The mechanical equations of the BLDCM are as follows 
[20]:  

𝑇$ − 𝑇% = 𝐽
𝑑&𝜃'
𝑑𝑡& + 𝐵

𝑑𝜃'
𝑑𝑡  

(4) 

𝜃$ =
𝒫()*)+
2 𝜃'															 

(5) 

𝜔' =
𝑑𝜃'
𝑑𝑡  

(6) 

where, 𝑇% and 𝐽 are the load torque and the moment of 
inertia of the rotor, respectively. The notations	𝜃', B and 
𝒫()*)+  represent the rotor position, the damping factor, 
and the number of motor poles, respectively. 𝜔' 
introduces the velocity of the rotor. The electrical torque 
of the BLDCM is given as: 

𝑇$ = 𝐾, 8𝐹(𝜃$)	𝑖! + 𝐹 8𝜃$ −
&-
.
:	𝑖" + 𝐹 8𝜃$ +

&-
.
:	𝑖#:  

(7) 

where, 𝐾, = 2𝑃𝑁/𝐵0𝑙𝑟 is the constant torque, 
	𝐹(𝜃)	is a trapezoidal function that builds the trapezoidal 
flux density form, 𝑁/ is the number of winding rounds in 
each stator phase, 𝐵0	is the average number of air space 
and l and r are the length and radius of the rotor, 
respectively. The load torque of the BLDCM is 
introduced as follows: 

𝑇1 = 𝑇23 + 𝑇24 (8) 

where, 𝑇24 is the flywheel disturbance torque and 𝑇23 
is the bearing disturbance torque, obtained from the sum 
of the coulomb and viscous frictions as follows: 

𝑇23 = 𝑇56/#)7/$ + 𝑇#)7%)'" = 𝐶5𝜔' + 𝐶#𝑠𝑖𝑔𝑛(𝜔')  (9)                                                                           

where 𝐶5	 and 𝐶#	 are viscous and coulomb friction 
coefficients, respectively. The back electromotive force 
on each phase of the stator windings is acquired as [21]: 

𝐸! = 𝐾$𝜔'𝐹(𝜃$) (10) 

𝐸" = 𝐾$𝜔'𝐹 C𝜃$ −
2𝜋
3 F (11) 

𝐸# = 𝐾$𝜔'𝐹 C𝜃$ +
2𝜋
3 F (12) 

where, 𝐾$	 is the induction electromotive constant. 
After arranging the above relationships, the  BLDCM 
space state model is obtained as follows: 

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝑑𝑖!
𝑑𝑡
𝑑𝑖"
𝑑𝑡
𝑑𝜔
𝑑𝑡
𝑑𝜃#
𝑑𝑡 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎛

−𝑅
𝐿 0 0 0

0
−𝑅
𝐿 0 	0

0
0

0
0

−𝐵
𝐽
1

0
0⎠

⎟
⎟
⎟
⎞

5

𝑖!
𝑖"
𝜔#
𝜃#

6+ 

 

 

 

(13) 

⎝

⎜
⎜
⎜
⎛

2
3𝐿

1
3𝐿 0

−1
3𝐿

1
3𝐿 0

0
0

0
0

1
𝐽
0⎠

⎟
⎟
⎟
⎞

:
𝑉!" − 𝐸!"
𝑉"$ − 𝐸"$
𝑇% − 𝑇&

> + 𝐷'()*+,"!-$%		 

 

where 𝐸!" = 𝐸! − 𝐸"  , 𝐸"# = 𝐸" − 𝐸#  and 
𝐷'()*+,"!-$%  is disturbance. The current i8   is calculated 
from (14) as: 

𝑖# = −(𝑖! + 𝑖") (14) 

2.2. The Stator Inter-Turn Fault Model        
The stator faults form 28 % to 36 % of the motors 

faults [22]. Therefore, the issue of diagnosis of this defect 
is of particular importance. One of the causes of this 
defect, is the breakdown of the insulation between the 
rings. Fig. 2 shows how the stator winding loops can be 
shortened. It is assumed that the fault has occurred within 
the coil of phase a.  

 
Fig2. Short inter-turn fault modelled in a 3-phase 

stator [23] 
As shown in Fig. 2, as1 is the healthy part of winding 

whereas as2 is the shorted section of the winding. Also 𝑖! 
and 𝑖0	 show respectively the stator current and the 
circulating current induced due to the short connection 
[24]. Fig. 3a shows the stator winding model in healthy 
condition whereas Fig. 3b shows stator winding in faulty 
condition.  

 
Fig1. Different steps of the proposed fault detection 
and classification method based on neural networks 
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Fig3. The considered model for healthy and faulty 

stator (a) the healthy 3-phase stator (b) the faulty 3-
phase stator 

 
In Fig.3, 𝐿# , 𝐿" , 𝐿! , 𝑅# , 𝑅" , 𝑅! , 	𝐸# , 𝐸"	and	𝐸!  are 

inductances, resistances and back EMF of related stator 
phases respectively; besides, all “R” and “L” are 
considered equal to each other. “𝑒0” represents the back 
EMF obtained from the shorted circuit current; “μ” 
indicates the ratio of short-circuit turns to the whole 
number of turns in one phase. Also, 𝑟/ represents short-
circuit impedance. In order to model the stator inter-turn 
short circuit, we must multiply the resistance and 
inductance of the healthy winding (Fig. 3a) into (1 − 𝜇) 
and (1 − 𝜇&) respectively. Due to the stator short circuit 
inter-turn fault, some harmonics in the BLDCM signals 
are created with the below frequencies [23]: 

𝑓9:, = (2𝑘 − 1)𝑓0                                                          (15)                      

where, 𝑘 = 1,2,3…  and 𝑓0  is the fundamental 
frequency. In this paper, 𝑓0 is considered as 20Hz so, the 
stator short circuit inter-turn frequencies are 𝑓9:, =
20,60,100,140… . 

 
2.3. The Rotor Static and Dynamic Imbalance        

In an ideal machine, the rotor rotation axis is exactly 
matched to the stator symmetry axis and the length of the 
air gap is the same everywhere.  Rotor imbalance or in 
other words, rotor eccentricity is an uneven air gap 
between the stator and the rotor. Rotor eccentricity can 
happen in two ways, dynamic eccentricity, and static 
eccentricity. By static eccentricity, the position of the 
minimum radial air gap does not change and remains 
constant, in other words when the stator symmetry 
axis,	𝑂/	, separates from the rotor symmetry axis, 𝑂+	 , and 
the rotor rotation axis, 𝑂<	, static eccentricity occurs. The 
reasons that cause static eccentricity include the ellipsoid 
shape of the current or incorrect rotor position [25]. The 
dynamic eccentricity occurs when the rotor centre is not 
on the rotating centre of the rotor and the radial air gap 
rotates, in other words, when the rotor symmetry axis,	𝑂+	, 
separates from the stator symmetry axis, 𝑂/	, and the rotor 
rotation axis, 𝑂<	, dynamic eccentricity occurs. The main 
reasons for dynamic eccentricity are shafts bending, 
mechanical resonance at critical speeds and bearing 
exhaustion [25]. When all three axes include:	𝑂+	,𝑂/	,𝑂<	 

are separate from each other, the eccentricity is called the 
mixed eccentricity (static and dynamic eccentricity). 
Fig.4a illustrates the static eccentricity while Fig.4b and 
Fig.4c illustrate the dynamic and mixed eccentricities, 
respectively.  

 
Fig4. The rotor dynamic and static imbalance 

faults (a) Static eccentricity (b) Dynamic eccentricity 
(c) Mixed eccentricity [26]. 

 
Eccentricities can be modelled according to the following 
relationships [27]: 

𝐅𝐬 = 𝐷/𝜔>& 𝑠𝑖𝑛(𝜔> ∗ 𝑡) (16) 
𝐓𝐃𝐅𝐒 = 𝑅> × 𝐅𝐬 (17) 
𝐓𝐃𝐅𝐃 = 𝐷B𝜔>& 𝑠𝑖𝑛(𝜔> ∗ 𝑡) (18) 

where, t is time, 𝑅>  is the wheel distance from the 
center of mass, 𝐷/ is the static disturbance coefficient, 𝐷B 
is the dynamic disturbance coefficient,	𝜔> is the wheel 
speed, 𝐓𝐃𝐅𝐒 and 𝐓𝐃𝐅𝐃 are disturbance torques due to the 
static and dynamic eccentricity, respectively. Due to the 
static and dynamic eccentricities, some harmonics in the 
BLDCM signals are built with the below frequencies [28]: 

𝑓2CD!'6# = 𝑓0 [1 ±
𝑘

𝒫E)%$/
2]
^ 

(20) 

𝑓9*!*6# = 𝑓0 ± 𝑘𝑓+ (21) 

𝑓+ =
𝜔+
60 (22) 

where, 𝑘 = 1,2,3… and 𝒫E)%$/ is the number of motor 
poles. 𝑓+  and 𝜔+  are rotor frequency and speed, 
respectively. In this paper, The BLDCM has 6 poles with 
𝜔+ = 41.86 𝑟𝑎𝑑 𝑠𝑒𝑐⁄  desired rotor speed. 

 
2.4. The Packet Wavelet Transform         

Packet wavelet transform (PWT), is one of the 
methods of signal analysis in time-frequency domain. In 
this type of wavelet, in contrast to discrete wavelet 
transform which only approximate coefficients pass 
through low and high pass filters, both approximate (app.)  
and detail (det.) coefficients are passed through these 
filters for each step [29]. Fig. 5 shows how this type of 
wavelet works.  
For p levels of decomposition, the PWT 
produces 	2F  different sets of coefficients called nodes. 
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The wavelet packet function can be introduced as follows 
[30]: 

𝑊F,H
' (𝑡) = 2

F
&𝑊'(2F𝑡 − 𝑘) (22) 

 

where, m and k are operation modulation parameter 
and translation operations, respectively. PWT coefficients 
can be calculated according to the following relation: 

𝑤F,H' (𝑡) = 〈𝑓(𝑡),𝑊F.H
' 〉 = h𝑓(𝑡)𝑊F,H

' (𝑡)𝑑𝑡 (23) 

where, 𝑓(𝑡) is main signal and operation 〈𝑓(𝑡),𝑊F.H
' 〉 

shows inner product of main signal and wavelet packet 
function. The nodes frequency intervals can be 
represented as below [30]:  

((𝑚 − 1)2JFJK𝑓/, 𝑚2JFJK𝑓/] (24) 

where,  𝑓/  is sampling frequency. For example, for 2 
level of decomposition 2& = 4 nodes are created and  𝑤&L 
shows the 0th node in second level of decomposition. This 
node has (0, 0!

M
] frequency band. In the next section, the 

feature extraction using the mentioned coefficients are 
described. 

 
2.5. Feature Extraction Using the Packet Wavelet 
Transform        

PWT continues decomposition until a level where the 
frequency band of PWT coefficients consist of faults 
frequencies. PWT is applied to current, speed and torque 
signals of BLDCM in 4 different load conditions include: 
No-load (NL), Half-load (HL), Full-load (FL) and 
Decreased-load (DL). In this paper, the decomposition 
level is 13 and 2K. nodes can be produced for each signal 
in 4 different load conditions so 𝑝 = 13  and 𝑚 =
0,1,2…2K. − 1 . Five nodes which includes: 𝑤KKL , 𝑤K&L , 
𝑤K.L , 𝑤K.K  and 	𝑤K.&  are selected for feature extraction for 
each signal. Frequency band of these nodes consist fault 
frequencies. Energy of mentioned nodes in 4 different 
load conditions and 8 different fault conditions for each 
signal is selected as features and these features are given 
as input to the neural network for faults classify. The 
energy of mentioned nodes is calculated as follows [31]: 

𝐸F' =lm𝑤F'(𝑘)n
&

H

 (25) 

   2.6. Radial Basis Function with Particle Swarm 
Optimization Algorithm        

Particle swarm optimization is one of the evolutionary 
algorithms for optimization of different problems. This 
algorithm, is inspired by natural processes such as: mass 
migration of birds or mass movements of fishes.  In this 
algorithm, a set of particles in the possible response space 
of the optimization function will start. Every particle in 
this space has a velocity and a position. Each particle, 
while remembering its best position in the space of 
response, sends its best position to the other particles and 
the other particles move toward that particle. At each 
iteration of this algorithm, the particles compare their 
current position with their best positions,𝑃"$/*, and if the 
current value is better than 𝑃"$/*	, it is replaced by	𝑃"$/*. 
By comparing the best position of each particle together, 
the best team position, 	gNOPQ  is updated. The following 
relationships are used to update the position and speed of 
each particle [32]: 

𝑣R(𝑡 + 1) = 𝜔𝑣R(𝑡) + 𝑐K𝑟K 8𝑝"$/*,R(𝑡) − 𝑝R(𝑡): 

+𝑐&𝑟& 8𝑔"$/*,R(𝑡) − 𝑝R(𝑡): 

(26) 

𝑝R(𝑡 + 1) = 𝑝R(𝑡) + 𝑣R(𝑡 + 1) (27) 

where, 𝑝R(𝑡) and 𝑣R(𝑡) are the position and velocity of 
the ith particle at the moment t, respectively, 𝜔  is the 
inertia coefficient, 𝑐K , 𝑐&  	 are learning coefficients and 
𝑟K	and 𝑟&	are two positive parameters with values lower 
than one.     

RBF neural networks are actually three-layer 
feedforward networks. In these networks, hidden layer 
neurons perform a set of radial basis functions while the 
output neurons have linear activating functions. Fig. 6 
shows the structure of these networks. 

 

Fig6. RBF neural network structure with radial 
basis activation function [33] 

 
As described in the previous section, the energy of the 

mentioned PWT coefficients m𝐸F'n  in 4 different load 
conditions and 7 different fault conditions are given as 
input to the RBF neural network. RBF neural networks 
are based on supervised learning and its training algorithm 
can be divided into two phases: 1-Set the input layer 
weights to the hidden layer. 2-Set the hidden layer weights 
to the output layer. 

In this paper, the RBF neural network can classify 7 
different BLDCM faults. In healthy condition the RBF 
output shows number 1 while if it shows numbers 2, 3, 4, 
5, 6, 7 and 8 it means that the BLDCM has RSI, SIT, RDI, 
Hybrid Fault 1, Hybrid Fault 2 and Hybrid Fault 3, 
respectively. Also, the RBF neural network output is 
calculated from the following equation: 

 
Fig5. Packet wavelet transform tree at 3 levels 

with approximate and detail nodes. 
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𝑦6 =l𝑤6R

'

RSK

𝑡𝑎𝑛ℎ 8	s𝑥 − 𝑠Rs
&
: 

(28) 

As mentioned in section 2.5, 𝑥 is neural network inputs 
vector.	𝑤6R  and 𝑠R are the hidden layer output weights and 
hidden layer centre points, respectively. 

Multilayer perceptron (MLP) is feedforward neural 
network and another kind of supervised learning. This 
type of neural network has at least one hidden layer and 
one output layer. The MLP neural network output can be 
computed as follows: 

𝑦6 = 𝑓[l𝑤6R,
T

RSK

𝑥R + 𝑏6^ 
(29) 

where, 𝑥R is neural network inputs vector.	𝑤6R, 𝑏6 and 
f are the weights between the input number i and neuron 
number j, bias and hidden layer activation function, 
respectively. 

In this paper, PSO algorithm is used to optimize the 
RBF neural network weights as shown in Fig.7.  
 

 
Fig7. Block diagram of the RBF which weights 

updated with the PSO algorithm 

As shown in Fig. 7, y and target are the RBF neural 
network output and the real class of inputs, respectively. 
The PSO optimization function is introduced as: ∑(𝑦 −
𝑡𝑎𝑟𝑔𝑒𝑡)&. PSO algorithm based on equations (26) and (27) 
finds 	gNOPQ  or best team position and it is used as RBF 
weights. 
 
2.7. Radial Basis Function with Genetic Algorithm         

Genetic algorithm is one of the meta-heuristic 
algorithms in optimal solution of different problems. This 
algorithm solves the optimization problems with the 
inspiration of nature and the formation of living 
organisms and converting these organisms into an optimal 
population. The general structure of the algorithm is 
shown in Fig. 8. 

 
Fig8. Different steps of genetic algorithms 

 
According to the above diagram, a number of 

population elements find the opportunity to reproduce. 

Those elements chosen are called parents. In the crossover 
process, portions of the chromosomes are replaced and 
this makes children share their parent characteristics so 
children are different from their parents. This process goal 
is produce a new child with good qualities of its parents 
in order to produce a better creature. In the mutation 
process, a chromosome number is randomly chosen and 
then the values of one or more genes are changed. The 
mutation process produces a new population and it 
replaces with the previous population. The GA algorithm 
is repeated enough to achieve an optimal solution.  

Function ∑(𝑦 − 𝑡𝑎𝑟𝑔𝑒𝑡)&  is used as optimization 
function for GA algorithm. Where, y and target are RBF 
neural network output and real class of RBF neural 
network inputs, respectively. GA algorithm starts to find 
optimal solution for mentioned optimization function. 
The GA algorithm optimal solution is used as RBF neural 
network weights. 

  
3. Simulation Results 

In this section, the effectiveness of the proposed 
algorithms is validated. Fig. 9 shows the current 
signal of BLDC motor in healthy, stator inter-turn, 
static rotor imbalance, and dynamic rotor imbalance 
faults.  

Fig9. The BLDC current in three faulty states 
(stator inter-turn, rotor static imbalances, and rotor 

dynamic imbalances) and healthy mode 
 
For this purpose, the parameters for the BLDCM are 

considered as shown in Table I. Also, the selected 
parameters for the PSO and GA are represented in Table 
II and Table III, respectively. 
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Table I. The parameters of the BLDC motor 
MATLAB model 

Parameter Value 
Phase resistor 8𝛺 

Phase inductance 2 × 10J.𝐻 
Phase inductance 0.66 × 10J.𝑘𝑔.𝑚& 

Damping coefficient 2 × 10JU𝑁.𝑚. 𝑠
/𝑟𝑎𝑑 

Induction electromotive 
coefficient 

2𝑁.𝑚/𝐴 

BLDC motor torque 
coefficient 

13.689
× 10J.𝑁.𝑚/𝐴 

Coulomb friction coefficient 10JV𝑁.𝑚 
Viscous friction coefficient 2 × 10JU𝑁.𝑚. 𝑠

/𝑟𝑎𝑑 
Sampling time 5 × 10JW𝑠 

Dynamic imbalance 
disturbance coefficient 

3.6 × 10JX 

Static imbalance disturbance 
coefficient 

9.2 × 10JX 

Short-circuit impedance 9 × 10J.𝛺 
 
 
Table II. The parameter related to the PSO algorithm 

Value Parameter 
100 
0 
1 

1.5 
2.0 
10J&L 

Population Size (Swarm Size) 
Inertia Weight 

Inertia Weight Damping Ratio 
Personal Learning Coefficient 
Global Learning Coefficient 

The Minimum Error 
 

Table III. The parameter related to the GA algorithm 

 
In the following, after explaining the different steps of 

feature extraction and neural network training, some test 
scenarios are considered for evaluating the designed 
algorithms. 

 
3.1. Feature Extraction        

By examining the Simulink model represented in Fig. 
1, the current, electromechanical torque and speed signals 
are obtained in seven different fault scenarios. The energy 
features of the five selected nodes are extracted by the 
PWT (relation (23)). The large number of features (2K. +
2K& +⋯+ 2K ), for motor current, electromechanical 
torque and motor speed for each one of the BLDCM 
conditions including healthy, SIT, RSI, RDI, SIT and RSI, 
SIT and RDI, RSI and RDI and finally SIT, RSI and RDI 
in 3 different load levels include: No-load (NL), Half-load 
(HL), Full-load (FL) are considered. 

These data are used as training and testing data for the 
neural network classifier, that is, 15 data sets for each of 
the motor conditions and for several load levels (NL, HL, 
FL). In general, there are 480 number of datasets, which 
60 % of them are used for neural network training and 40 % 
of them are used for neural network testing.  

   
3.2. Neural Network Training         

As mentioned above, 1500 data sets have been 
intended for training the neural network in each of the 
BLDCM conditions. The RBF and MLP neural networks 
are evaluated to determine the best performance for fault 
diagnosis. Each neural network is developed with 3 
neurons in the input layer, 1 neuron in the output layer and 
different neurons in the hidden layer. Fig. 10 shows the 
neural networks performance for different numbers of 
hidden neurons.  

 
Fig10 Neural networks performance for different neurons 

in hidden layer 
 

As shown, the best performance of the RBF neural 
network is provided when the numbers of nodes in the 
hidden layer is 60 that achieves the mean square error 
(MSE) of 0.0930048. Also, 60 nodes in the hidden layer 
are required to provide the mean square error (MSE) of 
1.6571 for the MLP neural network. Therefore, better 
performance for the data training step is obtained for the 
RBF neural network. 

In order to achieve the best classification performance 
of the neural network, it is also required to obtain the most 
suitable parameters for the optimization algorithms, 
namely the PSO and the GA. To illustrate the impact of 
inertia weight, personal and general learning coefficients 
and inertia rate damping ratio for the PSO algorithm, the 
results for 4 different load conditions are represented in 
Table IV. In this table, Inertia Weight, Global Learning 
Coefficient, and Inertia Rate Damping Ratio named as IW, 
GLC, and IRDR for abbreviate purposes. In this table, the 
resulted MSE obtained for different values of PSO 
parameters have been illustrated. By consideration the 
mentioned factors, the values 0, 1.5, 2 and 1 are chosen 
respectively for inertia weight, personal and general 
learning coefficients and inertia rate damping ratio.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Value Parameter 
[-1,1] 

0 
10J&L 

Initial Population Range 
Fitness Limit 

The Minimum Error 
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Table IV. PSO-RBF parameters Comparison based on 
MSE 

 
According to Table V, the value [0;1] chosen for the 

initial population range parameter in the GA result in the 
most appropriate performance. To illustrate the impact of 
inertia weight, personal and general learning coefficients 
and inertia rate damping ratio for the PSO algorithm, the 
results for 4 different load conditions based on 
convergence time are represented in Table V.  

 
 

Table V. PSO-RBF parameters Comparison based on 
Convergence Time 

 
 

 
 
 
 
 
 

Table VI. GA-RBF parameter Comparison 
 

According to Table VI, the value [0;1] chosen for the 
initial population range parameter in the GA result in the 
most appropriate performance.  

As shown in these tables, the best performance is 
achieved by combination of RBF neural network and the 
PSO algorithm. In the next section, the aforementioned 
combination of algorithms is further evaluated using 
different test data.        

 
3.3. Performance Validation of The Fault Diagnosis 
Method         

In this section, the results of the diagnostic algorithm 
for the validation stage are illustrated. For this purpose, 
the following test scenarios are selected considering 
different conditions of the BLDCM:   

 
• Case 1: Static imbalance starts at time t=2. 
• Case 2: Stator inter-turn, static and dynamic 
imbalances occur simultaneously at time t= 7 with 
µ = 0.75. 

 
Case 1 
The results of the fault diagnosis for the PSO- RBF 

and the GA-RBF methods are shown in Table VII. As 
indicated in this table, the investigated networks achieve 
acceptable MSE and convergence time in different 
loading levels. However, the better value of performance 
is obtained by the PSO that provides more accurate results 
in less convergence time. 

 
Table VII. The obtained MSE and convergence time of 

the proposed methods in Case 1 

 
Case 2 
The results of the fault diagnosis for the PSO- RBF 

and the GA-RBF methods are shown in Table VIII. 

GA-RBF 
Parameters 

Initial Population Range 

 [0; 1] [−1; 1] [−5; 5] [−10; 10] 
 
MSE (×
10JV) 
 
 
 
 
Convergence 
Time 
(Iteration) 

 
NL 
HL 
FL 
DL 
 
NL 
HL 
FL 
DL 

 
0.120 
0.227 
0.360 
6.946 
 
0.160 
0.217 
0.345 
5.496 

 
0.137 
0.354 
1.730 
9.517 
 
348 
400 
648 
579 

 
0.356 
0.957 
1.890 
12 
 
508 
551 
631 
571 

 
0.160 
0.217 
0.345 
5.496 
 
465 
307 
545 
566 

PSO-RBF 
Parameters 

MSE (× 10J&&) 

 NL 
6.635 
9.047 
9.985 
11.30 
 
6.429 
 
5.342 
 
- 
 
 
5.593 
4.670 
3.081 

HL 
2.525 
4.717 
6.695 
7.683 
 
4.171 
 
3.026 
 
- 
 
 
4.992 
3.307 
2.878 

FL 
1.221 
4.504 
5.437 
6.894 
 
2.601 
 
2.058 
 
- 
 
 
2.764 
2.441 
2.071 

DL 
7.465 
9.748 
10. 44 
11.96 
 
8.488 
 
6.945 
 
- 
 
 
6.135 
5.611 
4.403 

 
 
IW 
 
 
 
 
 
GLC 
 
 
 
 
IRDR 

𝑤E9Y = 0 
𝑤E9Y = 1 
𝑤E9Y = 2 
𝑤E9Y = 5 
 

�𝑐K = 2
𝑐& = 2 

�𝑐K = 1.5
𝑐& = 2 	

�𝑐K = 2.8
𝑐& = 1.3 

 
𝑤2!'F= 
0.5 
𝑤2!'F= 
0.99 
𝑤2!'F= 1 

PSO-RBF 
Parameters 

Convergence Time 

 NL 
55 
154 
225 
319 
 
60 

 
56 
 
- 
 
 
56 
56 
54 

HL 
56 
156 
226 
317 
 
65 

 
57 
 
- 
 
 
55 
57 
53 

FL 
58 
161 
225 
319 
 
72 

 
55 
 
- 
 
 
56 
59 
54 

DL 
59 
157 
224 
316 
 
63 

 
55 
 
- 
 
 
53 
58 
56 

 
 
IW 
 
 
 
 
 
GLC 
 
 
 
 
IRDR 

𝑤E9Y = 0 
𝑤E9Y = 1 
𝑤E9Y = 2 
𝑤E9Y = 5 
 

�𝑐K = 2
𝑐& = 2 

�𝑐K = 1.5
𝑐& = 2 	

�𝑐K = 2.8
𝑐& = 1.3 

 
𝑤2!'F= 0.5 
𝑤2!'F= 
0.99 
𝑤2!'F= 1 

Algorithms  PSO-RBF GA-RBF 

 
MSE (× 𝟏𝟎J𝟗) 
 
 
 
 
Convergence 
Time (Iteration) 

NL 
HL 
FL 
DL 
 
NL 
HL 
FL 
DL 

0.14603 
9.3679 
117.78 
1.4972 
 
65 
85 
80 
78 

5445 
250400 
525.2578 
11273 
 
235 
285 
595 
319 
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According to this table, acceptable performance is 
achieved again by the proposed algorithms. However, the 
convergence time of the PSO- RBF is less, while it obtains 
better MSE results. 

 
 

 
Table VIII. The obtained MSE and convergence time of 

the proposed methods in Case 2 
 

 
The results indicated an acceptable performance with 

high classification accuracy that is attributed to the 
selected signals for measurement and the approach used 
to extract the features. In order to show the effectiveness 
and accuracy of the proposed method for seven different 
faults detection and classification, Fig. 11 shows the 
accuracy and percentage of false classification with 
confusion matrix. 
 

 
Fig 11 Confusion matrix that compare the results of fault 
detection in healthy and seven different faulty modes of 

BLDC motor 
 

In healthy condition the true class shows number 1 while 
if it shows numbers 2, 3, 4, 5, 6, 7 and 8 it means that the 
BLDCM has static rotor eccentricity, stator inter-turn, 
dynamic rotor eccentricity, simultaneous occurrence of 
stator inter-turn and static rotor eccentricity, simultaneous 
occurrence of stator inter-turn and dynamic rotor 
eccentricity, simultaneous occurrence of static rotor 
eccentricity and dynamic rotor eccentricity and 
simultaneous occurrence of all mentioned faults, 
respectively. Consequently, the classification strategy 

based on the proposed methods resulted in an acceptable 
degree of generalization. For more comparison, Fig. 12 
compares the accuracy obtained by the proposed method 
(PSO-RBF) with work done in [34] for BLDCM in SIT 
fault condition. In  [34], the discreet wavelet transform 
(DWT) has been used as feature extraction and the multi-
layer perceptron (MLP) neural network has been 
introduced as classifier in order to detect stator inter-turn 
short circuit fault. The energy Eigen value of 3 phases 
motor stator current in different fault and load conditions 
is used as MLP neural network inputs. The MLP neural 
network is trained by back propagation (BP) algorithm.  
 

 
(a) 

 
(b) 

Fig 12 (a) Confusion matrixes for proposed 
method (b) Confusion matrixes for the work done in 

[34] 
 

As shown in Fig. 12, confusion matrix for the 
presented method and the work done in paper [34] 
shown in part (a) and (b), respectively. For better 
comparison, both confusion matrices are shown for 
stator inter-turn fault. In confusion matrix (a), test data 
include 48 data while, test data for confusion matrix 
(b) include 16 data. As shown in this figure, better 
performance of the proposed method is established 
compared to the mentioned related method.  Utilizing 
radial basis function neural network has many 
advantages that mentioned before, however, it has still 

Algorithms  PSO-RBF GA-RBF 

 
MSE (× 𝟏𝟎J𝟔) 
 
 
 
 
Convergence 
Time (Iteration) 

NL 
HL 
FL 
DL 
 
NL 
HL 
FL 
DL 

0.021564 
0.064532 
0.088965 
0.067658 

 
49 
72 
48 
106 

8.2230 
26.261 
2.5686 
54.714 

 
609 
377 
382 
251 
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problems in order to determine the hyper-parameters 
such as the number of hidden layers and the number 
of nodes in each layer. Furthermore, the proposed 
method is based on data-driven methods and it 
requires data sets in order to train the radial basis 
function neural network. 

According to the authors experiences, this work can 
be improved by utilizing different ideas: In order to 
tackle with determining the hyper-parameters of 
neural networks, increase the number of hidden layers 
of neural network and use deep neural network can be 
a good solution for the future works. In addition, 
increasing the performance and efficiency of the deep 
neural network by tackling missing data and big noises 
problems can improved the accuracy of fault 
classification method. Besides, collecting the training 
data from real time prototype which will need some 
pieces of equipment such as high accuracy sensors, 
obtaining an accurate nonlinear model of the BLDC 
motor by using neural networks, considering different 
variant load conditions in the simulation scenarios, 
and the experimental validation of the total method 
would be great suggestions for future works. 

 
4. Conclusion 

In this article, a fault diagnosis method is proposed to 
classify multiple faults of different BLDCM conditions 
(SIT, RSI and RDI). The current signal was considered 
together with the electromechanical torque and motor 
speed as diagnostic media. The above measurements were 
used to extract energy features by the PWT and it was 
shown that an acceptable isolation capability is achieved. 
The extracted features for different BLDCM conditions 
and loading levels serve as inputs for the neural network-
based classifiers. Also, the PSO and GA were suggested 
as optimization methods to update the neural networks 
weightings. It was shown that the convergence time of 
RBF-PSO is less, while it achieves more accurate results. 
For further evaluation of the proposed method, some test 
cases were considered. It was confirmed that the designed 
algorithm is effective that gives the required classification 
accuracy with acceptable convergence time.  Therefore, 
the developed diagnosis features and the considered 
combination of neural networks with the PWT approach 
allow multiple diagnosis of BLDCM faults that occur in 
different operating conditions. The paper can be improved 
by considering the BLDC motor in different variant load 
mode in order to enhance the performance of the method 
in the future works and propose the fault detection and 
classification method which can be used in indifferent 
variant load conditions. 
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