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In the recent years, active distribution systems are exposed to congestion more 
than in the past. In this regard, different congestion management mechanisms is 
investigated in the litrature. Adopting sharing framework for Energy Storage 
Systems (ESSs) to deal with the long pay-back period and high investment cost of 
Distributed Energy Resources (DERs), can bring a promising solution for relieving 
congestion. In this paper, a framework for simultaneous energy cost optimization 
and congestion management by using community energy storage (CES) is 
proposed. As a case study, a CES within a distribution system, connected to four 
microgrids (MGs) is considered. The shared storage system enables the MGs to 
reduce their energy costs by optimizing the operation of the battery using a 
Heuristic optimization algorithm, specifically the Teaching-Learning-Based 
Optimization (TLBO) algorithm. Simultaneously, the distribution system operator 
(DSO) leverages the shared storage to alleviate congestion by purchasing charged 
power from the CES manager. In the proposed approach, the DSO pays a premium 
price for the charged power from the CES, surpassing the prevailing electricity 
price during congested hours. Moreover, to manage uncertainties arising from load 
variations and intermittent renewable energy resources (RES), Monte Carlo 
simulation is employed in this study. Through comprehensive simulations and 
analyses, the proposed approach demonstrates the potential of CES as an effective 
tool for congestion management and operational cost optimization in distribution 
systems and providing economic benefits to both the MGs and the DSO. 
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1. Introduction 
In the ever-evolving landscape of distribution systems, the 

utilization of energy storage has become increasingly crucial for 
achieving a sustainable and reliable power grid. Initially, the 
focus was on distributed ESSs, where individual households or 
businesses would have their own storage units. As the demand 
for energy storage continues to rise, a new paradigm has 
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emerged -CES which is inspired from shared and cloud 
economy. This innovative approach involves pooling resources 
and creating a collective storage infrastructure that benefits 
multiple participants such as MGs. A schematic of a distribution 
system connected to MGs and a CES has been illustrated in Fig. 
1 [1]. Utilizing CES can bring several benefits for energy 
communities that are but not limited to optimizing the use of 
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renewable energy, balancing supply and demand, and fostering 
a more resilient and cost-effective energy ecosystem [2]. On the 
other hand, congestion in distribution systems can be caused by 
various factors such as high penetration of DERs, load growth, 
network topology changes, and power quality issues [3-6]. 
Generally, in modern power systems, congestion occurs when 
there is limited or inadequate distribution/transmission capacity 
to accommodate the energy demand. Congestion can lead to 
voltage violations, line overloading, power losses, and reliability 
degradation. Ref [7, 8], have delved into the intricate realm of 
transmission congestion and its management in power system 
operations. These studies highlight the profound challenges 
faced by independent system operators worldwide, including the 
impact of RES integration on congestion and the growing 
importance of emission reduction. Therefore, congestion 
management methods are needed to improve the security of 
distribution systems and how well they operate. The methods 
used for congestion management in distribution systems are 
network reconfiguration, OPF-based approaches, demand 
response, and optimal re-dispatch of DERs, energy resources, 
and ESSs by using smart meters [2]. The introduction of ESSs 
has resulted in potential solutions to problems caused by the 
growing penetration of DERs. By strategically deploying ESSs, 
uncertainties associated with RES, such as the intermittent 
nature of wind and solar generation, can be effectively mitigated. 
These storage units can play a vital role in relieving congestion 
in power transmission lines by optimally charging and 
discharging power as needed. The integration of ESSs into 
power system planning and scheduling enables efficient 
congestion management, ensuring a reliable and robust grid 
operation while harnessing the full potential of RES [9]. Due to 
the cost inefficiency inherent in individual ESS setups on a large 
scale, CES is introduced by leveraging cost sharing and 
economies of scale [10-13]. In addition to the investment 
benefits derived from a shared framework for ESS installation, 
this approach holds significant value in unlocking greater 
operational benefits when consumers collaborate. By embracing 
CES, Distribution System Operator (DSO) can actively 
participate as consumers and utilize community storage to solve 
a set of network related problems, such as peak trimming and 
congestion mitigation. By leveraging shared storage as an 
integral part of their strategies, DSO can enhance grid reliability, 
improve system flexibility, and ensure efficient energy 
distribution throughout their networks. Employing CES fosters 
synergy among consumers and grid operators, promoting a more 
integrated and resilient energy ecosystem. More specifically, 
this shared storage can be used on a larger scale among 
participants like MGs [14]. As another example of the 
functionality of shared storage, in Australian apartment 
complexes, central batteries installed in each unit greatly 
improved PV self-use, fostered independence, and lowered 
demand during peak times [15]. CES can offer definite financial 
advantages when integrated with solar systems in embedding 
networks or apartment buildings, even though the financial 
argument for EES is not entirely convincing. Also, in [16], a 
CES optimal scheduling method is proposed that considers both 
operational efficiency and reliability cost. The dependability 
metric of user disruption cost is incorporated into a multiple-
purpose schedule. An island partition model accurately 
calculates the reliability cost, allowing CES integration into the 
power restoration system. In [17], to maximize the scale and 
functionality of CES in hybrid power-generating systems, a bi-
level model is developed. The results demonstrate reductions in 
curtailment rates, peak shaving, frequency regulation, and 
deferred facility upgrades, leading to significant stakeholder 

benefits of approximately $154M, highlighting the advantages 
of CES investments in distribution systems.  

 
 
Moreover, market-based approaches and direct control 

methods are the two primary categories into which several 
ways to control congestion can be divided in terms of 
execution. Market-based approaches to managing 
congestion include dynamic tariffs, distribution capacity 
markets, shadow prices, and flexible service markets. 
These approaches provide financial incentives and pricing 
mechanisms. Conversely, physical changes to the network 
are made in order to reduce congestion when using direct 
control methods including network reconfiguration, 
reactive power control, and active power control [18]. In 
[19], a novel approach is presented for mitigating 
congestion in distribution systems by employing a 
centralized coordinated home energy management system 
based on market principles by utilizing daily power-based 
networking tariffs and variable tariffs. As another study of 
congestion management, model of a local flexibility 
market is introduced in [20] that encourages MGs to offer 
flexibility services, thereby addressing issues like 
congestion in an active distribution system. Additionally, 
authors in [21] proposed a strategy to address the issue of 
electricity congestion resulting from peer-to-peer energy 
transactions among MGs under uncertain conditions. This 
strategy involves a rolling horizon optimization 
framework that operates based on specific events. 
Furthermore, in [22], the authors investigated the efficient 
functioning of a virtual energy storage system consisting 
of multiple carriers such as batteries, thermal energy 
storage, power to hydrogen, hydrogen to power, and 
electric vehicles. The study focuses on the integration of 
demand response programs and takes into account market 
participants and price uncertainties. 

This paper focuses on the integration of a CES system 
within a distribution system, specifically a distribution 
system connected to MGs. The increasing adoption of 
DERs and the challenges posed by congestion in 
distribution systems necessitate efficient solutions for 
managing congestion and reducing energy costs. This 

 
Fig. 1. Topology of the distribution system 
connected to MGs and a CES. 
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CES optimization approach contributes by addressing the 
following issue: 
• Proposing an optimization mechanism of CES as a 

valuable tool in managing congestion in distribution 
systems.  

Also, Efficacy of the proposed method in reducing energy 
costs for MGs and managing congestion in the 
distribution system has been examined in case study. 
The remainder of the essay is structured as follows: in 
Section 2 the mathematical formulation is given, in 
Section 3, the solution approach is proposed, in Section 4, 
a case study has been presented and finally in Section 5 
conclusion remarks are given. 

 

2. Mathematical Model 

We have introduced a model for the CES scheduling in 
distribution systems connected to MGs along with their 
associated constraints. The model’s objective function 
incorporates the operational expenses of the CES, aiming 
to optimize its performance. 
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The objective function that includes the CES's 
operational cost is represented by equation (1). Equations 
(2) and (3), which represent a power flow limitation, are 
used to account for these needs. Equations (4) and (5), 
respectively, explain the preservation of voltage within 
acceptable bounds and the required injected power.  

The power that is generated by each photovoltaic panel 
is described by equation (6), where 𝑝!"(𝑡) signifies the 
generated energy of any PV panel, and𝑝#,!"	 denotes the 
PV nominal power. Additionally, the 
variables 𝐼&'(	, 𝐼)*+	, 𝐶, , 𝑇-*(( and 𝑇)*+ correspond to the 
radiation from the sun, the reference for radiation from the 
sun, the PV panel's temperature variable, the temperature 
of the cells, and the reference temperature of the cells, in 
that order. 

In equation (6), the cell temperature can be determined 
using equation (7), which takes into account the 
environmental temperature 𝑇*#", typical cell temperatures 
(NOCT), solar irradiance (si=800 mW/cm2), and ambient 
temperature 𝐼./0. Lastly, the total electricity generated by 
the PV panels at a given time t can be computed by 
considering how many PV panels there are (𝐶!" ) and 
utilizing equation (8). 

The output power of wind turbines is prone to vary 
because wind speed varies. The power generated by wind 
energy can be determined using equation (10). Each wind 
turbine's power generation is referred to 𝑃1, in equation 
(9). Additionally, 𝑉(𝑡) , 𝑉-2345# , 𝑉-234'23  and 𝑉)63*7 
represent the instantaneous wind velocity, cut-in speed, 
cut-out speed, and rated power speed, respectively. 
Equations governing the coefficients 𝐶8 and 𝐶9 are given 
by (10) and (11). The entire amount of power produced 
by wind turbines can be computed using equation (12), 
where 𝐶:3 denotes the total number of wind turbines. 

The state of charge and state of discharge of the CES at 
time t, which depend on the remaining energy from the 
previous time step (t-1), can be determined using 
equations (13) and (14). These equations involve the 
charging efficiency η0- and discharging efficiency η70 of 
the CES, respectively. Furthermore, equation (15) 
establishes the charge and discharge limitations enforced 
by the converter. The capacity of the converter is 
expressed in equation (15). 

Equation (16) represents the operational expenditure of 
the CES at time t and day h, taking into account the 
electricity price (𝑌3;) and the exchanged power to the CES 
(𝑃7,3; ). For each uncertainty scenario , this equation is 
calculated (U&). 
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3. SOLUTION APPROACH 

In this study, a CES system that is especially connected 
to MGs is integrated into a distribution system as part of 
CES. Maximizing the use of the CES is intended to 
alleviate the issues of congestion and high energy prices. 
In order to address these issues, the proposed approach 
leverages a CES system within a distribution system. In 
this paper’s model, we have two parties, consumers and 
DSO. Each of them tries to use CES for their own criteria. 
To investigate, two scenarios have been considered: 

In the first scenario, the TLBO technique is used by the 
shared storage manager to optimize its operation. In this 
scenario, the objective is the MGs energy expenses that 
are decreased as a result of this optimization's effective 
management of the battery's charging and discharging 
processes. The effectiveness of this strategy is proven 
through in-depth simulations and analysis, which indicate 
a notable decrease in the energy costs for the MGs. 

In the second scenario, the CES system is used to 
reduce congestion when it develops in the distribution 
system. The storage manager sells charged power to DSO, 
even though the price is higher than the going rate for 
electricity during peak times. Congestion is successfully 
managed by using CES, which benefits both the MGs and 
the DSO financially. By demonstrating its effectiveness in 
lowering energy prices for the MGs and controlling 
congestion in the distribution system, the research 
emphasizes the significance of CES as a crucial 
instrument in tackling congestion- and cost-related 
concerns in distribution systems. In both cases, the 
manager of the CES tries to schedule 
charging/discharging in a way that is financially 
advantageous compared to paying the electricity bill 
without the battery. Due to the different reasons described 
in the first section, there is occasionally congestion. In this 
situation, the CES manager makes an effort to work with 
the DSO during scheduling to reduce congestion while 
simultaneously generating more revenue for the MGs by 
selling energy at a higher price than the price during 
congestion hours. Fig. 2 illustrates the entire procedure 
while taking congestion into account by the red color. In 
addition, to address uncertainties stemming from 
fluctuations in load and renewable energy sources that are 
sporadic, this study utilizes Monte Carlo simulation.  

3.1. Optimization approach 

TLBO, one of the most recent heuristic optimization 
methods, is inspired by the method of education and 
learning. For studying and teaching, TLBO takes into 
account a theoretical framework. The connected system is 
optimized as a result of its implementation in two parts. 
The best population member is chosen as the first 
instructor, representing the mean attitude of the 
population toward itself. The best new member is then 
chosen as the best instructor among the freshman students 
Equation (17). In the actual world, a competent teacher is 
responsible for carrying out that mission. 

𝑚𝑚𝑛𝑒𝑤,𝑖 = 𝑚𝑚𝑜𝑙𝑑,𝑖 + 𝑟𝑖(𝑀𝑛𝑒𝑤 − (𝑇𝐹 × 𝑀𝑖))      (17) 

Another stage of the population's development is trying 
to advance together and learn more. Two students, 𝑚𝑚5 

and 𝑚𝑚D, are selected at random for this step. Equation 
(18) determines the location for that member if the target 
function for that member is less than the target for member 
j; else, Equation (19), determines the position for it. By 
comparing each member's objective function inside a 
given iteration, the optimal solution is thus discovered. 
Because it has the fewest parameters, one of this 
algorithm's most significant characteristics is its 
independence from parameters [23].  

𝑚𝑚𝑛𝑒𝑤,𝑖 = 𝑚𝑚𝑜𝑙𝑑,𝑖 + 𝑟𝑖(𝑚𝑚𝑖 − 𝑚𝑚𝑗)           (18) 

𝑚𝑚𝑛𝑒𝑤,𝑖 = 𝑚𝑚𝑜𝑙𝑑,𝑖 + 𝑟𝑖(𝑚𝑚𝑗 − 𝑚𝑚𝑖)           (19) 

The issue is nonlinear and non-convex in the suggested 
optimization (equations (1)–(16)) because power flow-
related imposed limitations are taken into account. 
Heuristic algorithms are promising methods for locating 
the best solution in such power system problems [21]. As 
a result, this study employs a heuristic algorithm in the 
research. It should be mentioned that similar problems can 
be solved using genetic algorithm (GA), particle swarm 
optimization (PSO), and other heuristic methods. The 
population size and maximum iteration are the only 
algorithmic parameters required for the TLBO technique 
to function, which is its main advantage. In addition, the 
algorithm requires less memory than others like GA and 
PSO and is simple to implement [24], see [25, 26].  

 
Fig. 2. Problem-solving process. 
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To ensure transparency and reproducibility, we provide 
a comprehensive description of the simulation 
methodology and parameter settings employed. The 
parameters of TLBO, including population size, and 
number of iterations, were carefully selected based on 
preliminary experiments and domain knowledge to best 
optimize CES allocation within MGs.  

3.2. Uncertainty consideration 

 The unpredictable nature of the input variables—wind 
speed, solar irradiation, and load demand—is taken into 
account in this study. The Weibull, Beta, and Normal 
distribution functions, respectively, model these 
parameters.  The variance and mean may be used to 
compute the load uncertainty. State prediction methods, 
stochastic load flows, and load probability density 
functions may all be made using these parameters. A 
Normal distribution function is being used in statistical 
loading analysis [27]. The Weibull probability 
distribution function,  widely used to forecast the wind 
speed frequency distribution, has been employed in this 
instance to estimate the wind speed dispersion [28]. We 
used a Beta distribution approach to model solar radiation 
on a global scale. When used to represent global solar 
radiation, the Beta distribution offers a reliable, adaptable 
method that allows for the addition and deletion of 
independent variables as needed and can be interpreted 
using conventional inferential statistics [29]. 

The probability distribution functions listed above have 
been utilized to produce samples using Monte Carlo 
simulation. The task is made extremely complex and 
difficult by the enormous number of samples. The fast-
forward technique was used in our study to minimize the 
number of situations, resulting in the reduction of 
scenarios to S. Running a random scenario-
generating technique produces scenarios that effectively 
depict the uncertainty present in a decision-making 
problem. However, because these situations are typically 
rather vast, an optimization model may be produced that 
is impractical to use. After performing further 
simulations, it is found that there are not any differences 
between 1000 and 10000 samples, so to reduce the 
simulation time 1000 samples for the model have been 
considered. In this way, a scenario reduction method has 
been used named the Kantorovich distance [11, 30]. 

4. Case Study and Results 

4.1. Case study 

The IEEE 33-bus system serves as the foundation for 
the test system used in this work, which exhibits radial 
characteristics. It consists of 32 lines, with the slack bus 
designated as bus number 1. The base voltage for the 
system is set at 12.66 kV, and the power base is defined 
as 10 MVA [31]. Both reactive and actual power for the 
system is recorded as 3.71 MW and 2.31 MVar, 
respectively, while the voltage is limited to 1.00 p.u. The 
data pertaining to the distributed generations within this 
test and to establish the connection with four MGs, 
specific data for each MG is provided in [11]. A 
comprehensive overview of the single-line illustration is 
presented in Fig. 3.  Technical specifications for the wind 

turbine and solar panels used in the system can be found 
in Table I.  
Moreover, other technical data has been given in Table II 
and III. It is assumed that all energy storage devices have 
96% charging and discharging efficiency. Each energy 
storage device has a minimum and maximum state of 
charge (SOC) of 10% and 90%, respectively. For wind 
turbines and solar panels, the rated power is considered as 
one KW. Fig. 4 shows the load profile and the 
environmental data (wind speed and solar radiation) for 
24 hours [30].   
 

 

Table II. Distributed Generations’ Data. 

System 

PV Wind Micro Turbine 

Unit 
number 

Total 
capacity 
(MW) 

Unit 
number 

Total 
capacity 
(MW) 

Maximum 
capacity (MW) 

MG 1 100 0.1 100 0.1 0.4 
MG 2 50 0.05 100 0.1 0.4 
MG 3 100 0.1 50 0.05 0.4 
MG 4 100 0.1 200 0.2 0.4 

Table III. MGs Loads 

System Load bus No. Total active 
load (MW) 

Total reactive  
load (MVar) 

MG1 34,35,36,37,38,39,40 0.37 0.0705 
MG2 41,42,43,44,45,46,47 0.275 0.0603 
MG3 48,4,50,51,52,53 0.338 0.0750 

MG4 54,55,56,57,58,59,60,61, 
62,63,64,65,66,67,68 0.675 0.1205 

 

 

Table I. Technical Data. 
Parameters Values Units 

PV modules 
Rated power 1 Kw 
Solar radiation 1000  W/m2 
PV panel temperature factor - 3.7 × 10-3 1/◦C 
Typical cell temperatures 43 ◦C 
Temperature reference for cells 25 ◦C 

Wind turbines 
Rated power 1 kW 
Cut-in wind speed 3 m/s 
Cut-out wind speed 17 m/s 
Rated wind speed 8 m/s 

 



Citation information: DOI 10.48308/ijrtei.2023.103675, International Journal of Research and Technology in Electrical Industry 

IJRTEI., 2023, Vol.2, No. 2, pp. 166-175 
 

171 

 

  
Fig. 3. Test distribution system along with several MGs and CES. 
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Fig. 4. Input data. 
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The simulation is carried out hourly, the load profile 
used is drawn from a true household load profile received 
from the Alberta Electric System Operator, and a real 
market energy price, given by the electrical market 
operator, is incorporated [31].  

The optimization process based on the TLBO method 
discussed in Subsection 3.1, utilizes a maximum of 50 
iterations and a population size of 500. The teaching 
factor and learning factor have been chosen between 1 and 
2. To account for uncertainties related to load profiles and 
environmental data, a Monte Carlo simulation method is 
employed, generating 1000 samples. These samples are 
subsequently reduced to 5 representative samples with 
probabilities of occurrence set at 0.6037, 0.118, 0.1048, 
0.092, and 0.08, respectively.  

4.2. First scenario: cost optimization 

In the first scenario, the shared storage system plays a 
crucial role in optimizing the operation of the battery 
within the MGs, leading to notable reductions in energy 
costs. This optimization process is accomplished by 
leveraging the power of the TLBO algorithm, a 
sophisticated heuristic optimization technique 
specifically designed for energy management. 
By employing the TLBO algorithm, the shared storage 
system intelligently determines the most optimal charging 
and discharging strategies based on various factors such 
as electricity prices, load demands, and available DERs. 
Through comprehensive simulations and rigorous 
analyses, the proposed approach showcases its 
remarkable effectiveness in minimizing energy costs for 
MGs. 
 Fig. 5 shows the operation of the CES by the storage 
manager to ensure that MGs costs will decrease. As can 
be seen, during lower prices like hours 1 to 3 or 7 to 9 it 
has tried to save energy in storage, on the other hand, in 
hours like 17 to 19 the energy of the storage has been 
discharged for the MGs in order not to use the electricity 
from the distribution system. As a result of this scheduling 
for charge and discharge, in Fig. 6, it is clearly evident 
that in a 24-hour day existence of the energy storage has 
been profitable, and more than 100$ the cost to be paid for 
the electricity has decreased. Moreover, through Fig. 7, it 
is revealed that individual MGs have benefited from CES.  
 
 

      
Fig. 5. Storage charge and discharge by MGs. 
 

 
 

 

        
Fig. 6. Total cost and saving obtained by shared storage 
in a day. 
 
 
 

            
Fig. 7. Saving obtained by MGs individually compared to 
without storage. 
 

4.3. Second scenario: cost optimization plus 
congestion management 

According to the second scenario, the distribution 
system gets congested at time t=15:00, and the CES 
system is employed to manage and relieve this 
congestion. In this situation, DSO still purchases the 
charged power even if the storage manager's offer is more 
than the usual rate for electricity during congestion hours. 
Through this method, which lessens congestion, the 
shared storage system economically benefits both the 
MGs and the DSO.  

Once again with the occurrence of congestion at a given 
time, the storage manager has been able to schedule 
storage’s charge and discharge successfully, ensuring that 
the use of storage is profitable as can be seen in Fig, 8, but 
with lower profit compared with Fig. 6, when there was 
not any congestion in distribution system lines. However 
it was profitable, and simultaneously storage manager has 
been able to cooperate with DSO to alleviate the 
congestion that has happened. As can be seen in Fig. 9 the 
line limitation considered is 290 Kw for the line between 
bus 28 and 29 at 16.00 because of the congestion. In this 
condition, DSO has shared the energy storage from the 
storage manager and has bought the charged energy of the 
shared storage 1.5 times more than the price of electricity 
in that hour. Consequently, as can be seen in Fig. 9, the 
passing power from the considered line has decreased. -3
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Fig. 9. Passing power between bus 28 and 29 in 24 hours 
of a day considering congestion. 

4.4. Aaassas ; 

Fig. 10 provides valuable insights into the application of 
energy storage in two different states, namely CES and 
discrete, to address congestion in a distribution system. 
The diagram demonstrates that employing CES between 
MGs proved to be effective in managing congestion in the 
distribution system's line. Conversely, when MGs 
attempted to install energy storage individually, the 
capacity limitations of the discrete energy storage 
hindered effective congestion management. In Fig. 11, a 
comparative analysis is presented, showcasing the 
performance of two heuristic algorithms, namely the Grey 
Wolf Optimizer (WGO) and TLBO, in terms of cost 
reduction in a distribution system involving four MGs. 
The results indicate that TLBO outperformed WGO in 
achieving cost reduction. This finding highlights the 
effectiveness of TLBO as a heuristic algorithm in 
optimizing the distribution system, leading to enhanced 
cost efficiency.  

The utilization of the TLBO algorithm resulted in a more 
substantial reduction in costs compared to the WGO 
algorithm. The distribution system, consisting of four 
MGs, benefitted significantly from the optimization 
capabilities of TLBO, enabling more efficient resource 
allocation and utilization. The superior performance of 
TLBO suggests that it is a promising approach for 
reducing costs and improving the overall operational 
efficiency of distribution systems in scenarios similar to 
the one considered in this study.  

5. Conclusion 
This study presented a comprehensive solution 

approach for managing congestion and minimizing 
energy costs in distribution systems through the 
integration of a CES system. By leveraging the shared 
storage system and applying the TLBO algorithm, the 
operation of the battery within MGs was optimized, 
resulting in a decrease in energy costs for the MGs. The 
effectiveness of this approach was validated through 
extensive simulations and analysis, which consistently 
demonstrated satisfactory results.  

Furthermore, the CES system proved instrumental in 
addressing congestion in the distribution system. During 
congestion hours, DSO purchased charged power from 
the storage manager, even at a premium price exceeding 
the prevailing electricity rate. This mechanism effectively 
alleviated congestion and provided economic benefits to 
both the MGs and the DSO. The successful management 
of congestion and the reduction in energy costs 
underscored the importance of CES as a valuable tool in 
tackling congestion and cost-related challenges in 
distribution systems.  

Moreover, the results highlight the importance of a 
coordinated and centralized approach, such as CES, in 
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Fig. 8. Total cost and saving obtained by shared 
storage in a day when congestion occurs. 
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Fig. 10. Application of energy storage in two different states, namely CES and discrete, to address congestion in 
a distribution system. 
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tackling congestion issues within a distribution system. 
The utilization of CES between MGs enables efficient 
sharing and distribution of energy resources, effectively 
alleviating congestion and maintaining a smooth 
operation. In contrast, individual installations of discrete 
energy storage systems by MGs lack the necessary 
capacity to effectively manage congestion, emphasizing 
the benefits of a centralized and collaborative energy 
storage approach. A potential direction for future research 
based on this paper is to explore the booking strategy of 
CES in a peer-to-peer energy trading context. 
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