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Recently, the guaranteed cost consensus problem of multi-agent systems has 
attracted the attention of researchers. This paper tackles the challenge of event-
triggered guaranteed cost leader-following consensus in heterogeneous uncertain 
nonlinear fractional-order multi-agent systems employing observers. The agents 
have different fractional-order dynamics coupled with uncertainties in their state, 
input, and output. To optimize communication resources, the paper introduces an 
event-triggered strategy, ensuring that updates to the control protocol occur only 
upon the satisfaction of the triggering condition. Leveraging this strategy and 
applying the fractional Lyapunov direct method, the problem is formulated. To 
obtain control and observer gains, a systematic approach algorithm is proposed 
using Linear Matrix Inequalities (LMI), with corresponding criteria established to 
guarantee guaranteed cost consensus. The effectiveness of the proposed method is 
validated through a numerical simulation, with comprehensive results presented. 
This research not only addresses a complex problem in multi-agent systems but 
also contributes a practical and resource-efficient solution, showcasing its 
potential applicability in real-world scenarios. 
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1. Introduction 

In multi-agent systems (MASs), multiple simple 
agents cooperate to perform a large-scale complicated 
task. In the last decade, due to the wide practical 
applications of MAS in various fields including 
unmanned aerial vehicle formation [1], sensor network 
synchronization [2], power grid synchronization control 
[3], and intelligent transportation [4], there have been 
many studies on the coordination of MASs. The 
consensus problem as one of the cooperative control 
problems indicates that all agents reach a common final 
state through the exchange of local information with their 
neighbors. Specifically, the leader-following consensus 
problem arises when there is a leading agent to provide 
the agreement state. Therefore, the control objective of 
MAS can be realized by controlling only the leader, which 
not only significantly simplifies the analysis and design of 
MAS but also helps to save energy and reduce control 
costs [5]. 
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Researchers have designed many controllers, 
including optimal and adaptive control [6, 7], distributed 
impulsive control [8], and fuzzy control [9], to achieve 
leader-follower consensus of homogeneous MASs where 
all agents have the same dynamics. However, in many 
cases, the agents are heterogeneous, which means that 
their dynamics and even the dimensions of their state 
space are different.  

Physical systems are subject to various model 
uncertainties and various practical nonlinear phenomena, 
which may originate from changes in system parameters 
or modeling errors. Failure to properly deal with these 
phenomena can reduce the closed-loop performance of 
systems or may even make systems unstable. Therefore, 
the robust control of MASs has been the target of many 
researchers in recent years [10-12]. In [11] the robust 
control problem of linear homogeneous MASs with 
different norm-bounded uncertainties is studied. Further 
by using a distributed observer-based protocol, the robust 
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control problem synthesized with transient performance is 
studied in [12] . 

In addition, fractional-order models which are an 
extension of integer-order models, can more accurately 
describe systems due to their superior performance in 
depicting the memory and intrinsic properties of different 
types of materials and processes [13, 14], for example, 
motion of multiple agents in viscoelastic materials or 
macromolecule fluids.  

In recent years, many research works have addressed 
the issue of consensus control of fractional-order MASs 
(FOMASs) [15-22]. Authors in [15] based on the linear 
matrix inequalities, proposed a distributed state feedback 
consensus protocol for consensus of heterogeneous 
FOMAS. In [16] Gong studied a distributed leader-
following of heterogeneous nonlinear FOMASs with an 
unknown leader. In [17, 18] Gong et al. investigated 
adaptive robust leader-following consensus control for 
uncertain nonlinear FOMASs. In [19] Gong et al. 
proposed a distributed robust consensus control of 
heterogeneous FOMASs. In [20] Gong et al. investigated 
the output feedback consensus control problem for a class 
of nonlinear FOMASs. In [21] Gong et al. investigated 
robust adaptive fault-tolerant consensus control for 
uncertain nonlinear FOMASs. In [22] Wen et al. proposed 
an observer and virtual exo-system based output 
consensus of leader-following heterogeneous nonlinear 
FOMASs. 

In all the above aforementioned works, the consensus 
problem of FOMASs are obtained while transmission 
information between agents are continuous which is 
difficult to implement in practice. Periodic sampling is a 
good method to transmission information between agents. 
However, when the sampling period is very small, it can 
lead to a loss of communication resources. Thus, time-
triggered sampling is used instead of event-triggered 
sampling in recent works. Many research works have 
been done to apply event-triggered strategies to the 
consensus problem of MASs [23-27]. Authors in [23] 
investigated the event-triggered leader-following 
consensus problem for MASs with semi-Markov 
switching topologies. 

In [24] Li et al. proposed a dynamic event-triggered 
control for heterogeneous leader-following consensus of 
MASs based on input to state stability. In [25] Yang et al. 
studied the leader-following output consensus problem of 
heterogeneous linear MASs, where followers are subject 
to parameter uncertainties. In [26] Ren et al. investigated 
the consensus of general linear FOMASs by distributed 
event-triggered strategy. In [27] Hu et al. proposed the 
event-triggered leader-following consensus for FOMASs. 

In practical uses of MASs, agents can only have 
limited energy resources to perform certain tasks such as 
cognition, transmission information, and movement. 
Recently, the guaranteed cost consensus (GCC) problem 
of MASs has abundantly attracted the attention of 
researchers [28-32]. In [28] Wang et al. investigated the 
GCC control for MASs with fixed interaction topologies. 
In [29] Wang et al. investigated the guaranteed 
performance consensus for the Lipschitz class of 
nonlinear MASs. In [30] Luo et al. proposed event-
triggered GCC for uncertain nonlinear MASs. In [31] Luo 
et al. proposed observer-based event-triggered GCC 

control for second-order MASs. In [32] Tian et al. 
investigated the leaderless GCC for uncertain, delayed 
nonlinear FOMASs. 

Motivated by the above discussion, the event-
triggered leader-following GCC for heterogeneous 
uncertain nonlinear FOMASs based on observers 
proposed in this paper. 

The main contributions of this paper can be 
summarized as follows:  

- An observer-based output feedback control for 
event-triggered consensus of nonlinear FOMASs with 
state, input, and output uncertainty is proposed. 

- GCC by the event-triggered strategy for FOMASs is 
obtained. 

- To obtain control and observer gains, a systematic 
approach using linear matrix inequality (LMI) algorithm 
is proposed. 

The rest of the article is organized as follows: In 
Section 2 essential concepts and useful lemmas are 
provided. Section 3 presents the main theorems. A 
numerical example is provided in Section 4 and finally, in 
Section 5 conclusion remarks are given. 
 
2. Preliminary and Problem Formulation  
 
A. Notations 
In this paper, ‖. ‖ and ⨂ represent the Euclidean norm 
and the Kronecker product, respectively. 𝐼! ∈ ℝ"×" is an 
identity matrix. 𝑑𝑖𝑎𝑔{∗}  and 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔{∗}  denote the 
diagonal matrix and the block diagonal matrix, 
respectively. The statement 𝐴 > 0(≥ 0) and 𝐴 < 0(≤ 0) 
represent symmetric positive and negative definite (semi-
definite) matrices, respectively. The matrices 𝐴$% and 𝐴& 
denote inverse and the transpose of 𝐴, respectively. 𝑁< ≜
{1,2, … ,𝑁}. 
B. Graph theory 
Consider a MAS composed of 𝑁 follower agents and a 
leader. The interaction among 𝑁 followers can be denoted 
by a weighted digraph 𝒢 = (𝒱, ℰ) , where 𝒱 =
{𝑣%, 𝑣', … , 𝑣!} and ℰ ⊆ 𝒱 × 𝒱 represent the set of nodes 
and the set of directed edges of 𝒢, respectively. An edge 
𝜀() = J𝑣( , 𝑣)K ∈ ℰ  means that agent 𝑗  can transmit 
information to agent 𝑖 and they are called the parent node 
and the child node, respectively. 𝒜 = N𝑎)(O ∈ ℝ!×! 
denotes the weighted adjacency matrix where 𝑎)( > 0 if 
𝜀() ∈ ℰ and 𝑎)( = 0 otherwise. Besides 𝑎)) = 0 for 𝑖 ∈ 𝑁<. 
The diagonal matrix 𝒟 = 𝑑𝑖𝑎𝑔{𝑑%, 𝑑', … , 𝑑!}  is the 
degree matrix where the elements are defined by 𝑑) =
∑ 𝑎)(!
(*%  and the Laplacian matrix of the weighted digraph 

𝒢  is defined as ℒ = 𝒟 −𝒜 = N𝑙)(O ∈ ℝ!×! , i.e. 𝑙)) =
∑ 𝑎)(!
(*%  and 𝑙)( = −𝑎)(  for 𝑖 ≠ 𝑗 . Letting node 0  be 

associated with the leader, the communication among all 
followers and the leader can be described by a new 
directed graph �̅� = (𝒱V, ℰ̅), where 𝒱V = 𝒱 ∪ {𝑣+} and ℰ̅ ⊆
𝒱V × 𝒱V . The diagonal matrix ℬ = 𝑑𝑖𝑎𝑔{𝑏%, 𝑏', … , 𝑏!} 
denote the weights of the directed edges from leader to 
followers in the digraph �̅� . If 𝑏) > 0 , there exists a 
directed edge from the leader to the follower 𝑖 and 𝑏) = 0 
otherwise. A digraph contains a directed spanning tree if 
there exists a node called root, which has no parent node 
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and this root node has directed paths to all other nodes in 
this graph. 

Lemma 1 [22]: The directed graph of all agents has a 
directed spanning tree with the leader rooted if all 
eigenvalues of matrix 𝓗 = 𝓛+𝓑  have positive real 
parts and vice versa. 

C. Fractional-order operators 
The Caputo and Riemann-Liouville are two well-known 
fractional-order derivatives, since he initial conditions in 
Caputo fractional-order derivative is as same as the 
integer-order differential equations, thus to model the 
FOMASs we use the Caputo derivative in this paper.  

Definition 1 [33] (Riemann-Liouville Integral): The 
Riemann-Liouville fractional-order integral of function 
𝒙(𝒕) of order 𝜶 is defined as: 

𝐼,!
-.

,
/𝑥(𝑡) = %

0(/)∫ (𝑡 − 𝜏)/$%𝑥(𝜏)𝑑𝜏,
,!

  (1) 

where 𝛼 ∈ (𝑛 − 1, 𝑛], 𝑛 ∈ ℤ3  and 𝛤(𝑠) = ∫ 𝑡4$%𝑒$,𝑑𝑡5
+  

is the Gamma function. For convenience, we use the 
notion 𝐼/𝑥(𝑡) to denote 𝐼,!

-.
,
/𝑥(𝑡) later. 

Definition 2 [33] (Caputo Derivative): The Caputo 
fractional-order derivative of function 𝑥(𝑡) of order 𝛼 
defined as: 
𝐷,!
6

,
/𝑥(𝑡) = 𝐼"$/𝑥(")(𝑡) =
%

0("$/)∫
7(#)(8)

(,$8)%&'(#
𝑑𝜏,

,!
  

(2) 

where 𝑛 is a positive integer satisfying 𝑛 − 1 ≤ 𝛼 < 𝑛. 
For convenience, we use the notion 𝐷/𝑥(𝑡)  to denote 
𝐷,!
6

,
/𝑥(𝑡) later. 

Lemma 2 [34] (Fractional Lyapunov direct method): Let 
𝒙 = 𝟎  be an equilibrium point for the nonautonomous 
fractional order system 𝑫𝜶𝒙(𝒕) = 𝒇(𝒕, 𝒙)  where 𝒂 ∈
(𝟎, 𝟏], 𝒇: [𝒕𝟎, ∞) × 𝜴 → ℝ𝒏 is piecewise continuous in 𝒕 
and locally Lipschitz in 𝒙 on [𝒕𝟎, ∞) × 𝜴 and 𝜴 ∈ ℝ𝒏 is a 
domain that contains the origin 𝒙 = 𝟎. Assume that there 
exists a Lyapunov function 𝑽J𝒕, 𝒙(𝒕)K  and class 𝓚 
functions 𝜶𝒊(𝒊 = 𝟏, 𝟐, 𝟑) satisfying: 

𝛼%(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝛼'(‖𝑥‖)  (3) 

𝐷/𝑉(𝑡, 𝑥) ≤ −𝛼=(‖𝑥‖)  (4) 

Then the equilibrium point is asymptotically stable. 

Lemma 3 [32]: For a differentiable vector 𝒙(𝒕) ∈ ℝ𝒏, a 
symmetric positive-definite 𝑷  and 𝜶 ∈ (𝟎, 𝟏]  the 
following inequality is true: 

𝐷/J𝑥&(𝑡)𝑃𝑥(𝑡)K ≤ 𝐷/𝑥&(𝑡)𝑃𝑥(𝑡) +
𝑥,(𝑡)𝑃𝐷/𝑥(𝑡)  

(5) 

D. Problem description 
Consider a heterogeneous uncertain nonlinear FOMAS 
with 𝑁 agents and a leader. The dynamics of agent 𝑖 is 
described by: 

�
𝐷/𝑥)(𝑡) = J𝐴) + Δ𝐴)(𝑡)K𝑥)(𝑡) +
J𝐵) + Δ𝐵)(𝑡)K𝑢)(𝑡) + 𝑓)J𝑥)(𝑡)K

𝑦)(𝑡) = J𝐶) + Δ𝐶)(𝑡)K𝑥)(𝑡)																																																											
;			 

𝑖 ∈ 𝑁< ∪ {0}  

(6) 

where 0 < 𝛼 ≤ 1 , 	𝑥) ∈ ℝ" , 𝑢) ∈ ℝ>)  and 𝑦) ∈ ℝ?)  are 
the pseudo-state, control input and measurable output 
vectors of agent 𝑖, respectively. The matrices 𝐴) ∈ ℝ"×", 
𝐵) ∈ ℝ"×>)  and 𝐶) ∈ ℝ?)×"  are nominal parts and 
Δ𝐴)(𝑡) , Δ𝐵)(𝑡)  and Δ𝐶)(𝑡)  represent time-varying 
parameter uncertainties and 𝑓)J𝑥)(𝑡)K  represents the 
nonlinear dynamic function. 

Definition 3: The MAS represented in (6) said to achieve 
leader-following consensus if 𝒍𝒊𝒎

𝒕→5
‖𝒙𝒊(𝒕) − 𝒙𝟎(𝒕)‖ = 𝟎,

∀𝒊 ∈ 𝑵< . 

Assumption 1: The pairs (𝑨𝒊, 𝑩𝒊) are stabilizable and the 
pairs (𝑪𝒊, 𝑨𝒊) are detectable ∀𝒊 ∈ 𝑵< ∪ {𝟎}. 

Assumption 2: Time-varying parameter uncertainties can 
formulated as: 
[𝛥𝐴)(𝑡) 𝛥𝐵)(𝑡)] = 𝑀)𝐻)(𝑡)[𝐴�) 𝐵�)],

𝛥𝐶)(𝑡) = 𝑁)𝐻)(𝑡)𝐶�) 
(7) 

where 𝑀), 𝑁), 𝐴�), 𝐵�) and 𝐶�) are real constant matrices of 
appropriate dimensions, and 𝐻)(𝑡)  is the real unknown 
time-varying matrix which satisfy 𝐻)&(𝑡)𝐻)(𝑡) ≤ 𝐼 ∀𝑖 ∈
𝑁< ∪ {0}. 

Assumption 3: The nonlinear functions 𝒇𝒊J𝒙𝒊(𝒕)K:ℝ𝒏 →
ℝ𝒏  are continuous functions that satisfy the following 
Lipschitz conditions: 

‖𝑓)(𝑥) − 𝑓)(𝑦)‖ ≤ 𝜃)‖𝑥 − 𝑦‖,
‖𝑓)(𝑥)‖ ≤ 𝜃)‖𝑥‖ (8) 

‖𝑓)(𝑥) − 𝑓+(𝑦)‖ ≤ 𝜎)‖𝑥 − 𝑦‖ (9) 

where 𝜽𝒊 and 𝝈𝒊 are known constants ∀𝒊 ∈ 𝑵< ∪ {𝟎}. 

Assumption 4: The interaction topology of all agents 
contains a directed spanning tree with the leader as the 
root. 

 
3. Observers and virtual systems  

 
This paper allows systems pseudo-state to be 
immeasurable. For each agent, we consider an observer 
that is described as follows: 
𝐷/𝑥�)(𝑡) = 𝐴)𝑥�)(𝑡) + 𝐵)𝑢)(𝑡) + 𝑓)J𝑥�)(𝑡)K

− 𝐸)J𝑦)(𝑡) − 𝐶)𝑥�)(𝑡)K,
𝑖 ∈ 𝑁< ∪ {0} 

(10) 

where 𝑥�)(𝑡) ∈ ℝ"  denotes estimate of the pseudo-state 
𝑥)(𝑡)  and 𝐸) ∈ ℝ"×?)  denotes the observer gain matrix 
and we define observer error as 𝜂)(𝑡) = 𝑥)(𝑡) − 𝑥�)(𝑡). 
Moreover, for each follower we consider a virtual 
system that is described as follows: 
𝐷/𝑥¡)(𝑡) = (𝐴+ + 𝐵+𝐾+)𝑥¡)(𝑡) + 𝑓+J𝑥¡)(𝑡)K

+ 𝐹)𝑣)(𝑡), 𝑖 ∈ 𝑁< 
(11) 

where 𝑥¡)(𝑡) ∈ ℝ" denotes virtual pseudo-state of agent 𝑖 
and 𝐹) ∈ ℝ"×" denotes the consensus gain matrix and we 
define virtual consensus error as 𝜁)(𝑡) = 𝑥¡)(𝑡) − 𝑥�+(𝑡). 
Control inputs is designed as: 
𝑢+(𝑡) = 𝐾+𝑥�+(𝑡), 𝑢)(𝑡)

= 𝐾)𝑥�)(𝑡)
+𝑊)J𝑥�)(𝑡) − 𝑥¡)(𝑡)K,			𝑖 ∈ 𝑁< 

(12) 
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where 𝐾) ∈ ℝ>)×"  and 𝑊) ∈ ℝ>)×"  denotes the pseudo-
state feedback gain matrix and consensus feedback gain 
matrix. 
 
4. Event-triggered control strategy 
 
The approximation error between the current instant and 
the last event instant for virtual pseudo-state of agent 𝑖 
defined as: 
𝑒)(𝑡) = 𝑥¡)J𝑡B)

) K − 𝑥¡)(𝑡), ∀𝑡 ∈ N𝑡B)
) , 𝑡B)3%

) K,
𝑖 ∈ 𝑁< 

(13) 

The event-triggered consensus control protocol 
described as: 
𝑣)(𝑡) = ∑ 𝑎)( ¦𝑥¡)J𝑡B)

) K − 𝑥¡( §𝑡B*
( ¨©!

(*% +

𝑏) §𝑥¡)J𝑡B)
) K − 𝑥�+(𝑡)¨ , 𝑖 ∈ 𝑁<  

(14) 

where 𝑥¡)J𝑡B)
) K is the virtual pseudo-state of agent 𝑖 at the 

𝑘) time event-triggered. 
For agent 𝑖  the event-triggered strategy can be designed 
as follows: 
𝑡%) = 0,
𝑡B)3%
)

= inf𝑡 > 𝑡B)
) ®𝑒)&(𝑡)𝑇)𝑒)(𝑡) > 𝜌𝑣)&(𝑡)𝑄)𝑣)(𝑡)² ,

𝑖 ∈ 𝑁< 

(15) 

here the time sequence 𝑡B)
)  represents the event-triggered 

for agent 𝑖, the adjacent sampling instants represent by 𝑡B)
)  

and 𝑡B)3%
)  . 𝑇) = 𝑇)&  and 𝑄) = 𝑄)&  are positive-definite 

matrices, and event-triggered threshold is shown by a 
scalar value 𝜌 ∈ [0, 1]  . When 𝑡 = 𝑡B)

) , to update the 
control protocol, the new sampled virtual pseudo-state is 
conducted to the sub-controller.  
The observer-based event-triggered control scheme for 
follower 𝑖 is shown in Figure 1. 
 
G. Guaranteed cost   

The guaranteed cost functions related to the leader’s 
system, virtual systems, and follower’s systems are 
defined as follows:  

𝐽7! = 𝑙𝑖𝑚
,→5

µ𝐼/ §𝑗C!(𝑡) + 𝑗D!(𝑡)¨¶ (16) 

𝐽7) = 𝑙𝑖𝑚
,→5

µ𝐼/ §𝑗C)(𝑡) + 𝑗E)(𝑡) + 𝑗D)(𝑡)¨¶ , 𝑖 ∈ 𝑁<  (17) 

𝐽7F = 𝑙𝑖𝑚
,→5

µ𝐼/ §𝑗G(𝑡) + 𝑗H(𝑡)¨¶  (18) 

𝑗C)(𝑡) = 𝜂)&(𝑡)𝐺C)𝜂)(𝑡), 𝑖 ∈ 𝑁< ∪ {0}  (19) 

𝑗E)(𝑡) = 𝜑)&(𝑡)𝐺E)𝜑)(𝑡), 𝑖 ∈ 𝑁<  (20) 

𝑗D)(𝑡) = 𝑢)&(𝑡)𝐺D)𝑢)(𝑡), 𝑖 ∈ 𝑁< ∪ {0}  (21) 

𝑗G(𝑡) = ∑ 𝜁)&(𝑡)𝐺G)𝜁)(𝑡)²
!
)*%   (22) 

𝑗H(𝑡) = ∑ 𝑣)&(𝑡)𝐹)&𝐺H)𝐹)𝑣)(𝑡)²
!
)*%   (23) 

where 𝜂)(𝑡) , 𝜑)(𝑡) = 𝑥)(𝑡) − 𝑥¡)(𝑡) , 𝑢)(𝑡) , 𝜁)(𝑡)  and 
𝑣)(𝑡) are observer error, consensus error, control input, 
virtual consensus error and the event-triggered consensus 
control protocol of agent 𝑖 , respectively and 𝐺C) > 0 , 
𝐺E) > 0 , 𝐺D) > 0 , 𝐺G) > 0  and 𝐺H) > 0  are given 
symmetric matrices. 

Definition 4: The MAS represented in (6 ) with cost 
functions (16), (17) and (18) is said to achieve leader-
following GCC if there exist positive scalars 𝑱𝒙𝟎

∗ , 𝑱𝒙𝒊
∗  and 

𝑱𝒙K∗  such that the leader-following consensus is achieved 
and cost functions are satisfies the inequalities 𝑱𝒙𝟎 <
𝑱𝒙𝟎
∗ ,	𝑱𝒙𝒊 < 𝑱𝒙𝒊

∗  and 𝑱𝒙K < 𝑱𝒙K∗  where 𝑱𝒙𝟎
∗ , 𝑱𝒙𝒊

∗  and 𝑱𝒙K∗  are called 
guaranteed cost upper bound. 

Lemma 4 [35]: For any real vector with the appropriate 
dimension x and y, the following inequality is true:  

𝑥&𝑦 + 𝑦&𝑥 ≤ 𝛽𝑥&𝑥 + 𝛽$%𝑦&𝑦 (24) 

where 𝜷 is a positive number. 

Lemma 5 [36] (Congruence Transformation): For a 
symmetric matrix 𝐴 and a invertible matrix 𝑇, 𝑇&𝐴𝑇 is 
negative definite if and only if 𝐴 is negative definite. 
Lemma 6 [36] (Schur Complement): For a symmetric 

matrix 𝐴 and a symmetric invertible matrix 𝓆, ½
𝐴 𝓅
𝓅& 𝓆¿ 

is negative definite if and only if 𝓆 and 𝐴 − 𝓅𝓆$%𝓅& are 
negative definite. 
3. Main results 
To achieve leader-following consensus according to 
mentioned strategy, first we simplified the consensus 
error as follows: 
𝛿)(𝑡) = 𝑥)(𝑡) − 𝑥+(𝑡)

= 𝑥)(𝑡) − 𝑥�+(𝑡) − 𝜂+(𝑡)
= 𝑥)(𝑡) − 𝑥¡)(𝑡) + 𝜁)(𝑡)
− 𝜂+(𝑡) 

(25) 

Figure 1: Observer-based event-triggered control scheme for the follower 𝑖. 
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thus if 𝜂+(𝑡),	𝜁)(𝑡) and 𝜑)(𝑡) = 𝑥)(𝑡) − 𝑥¡)(𝑡) are stable 
then 𝛿)(𝑡) is stable. 
In three steps we achieve stability of 𝜂+(𝑡),	𝜁)(𝑡) and 
𝜑)(𝑡) = 𝑥)(𝑡) − 𝑥¡)(𝑡), respectively. 
Step 1: Stability of leader’s system and observer 
error 
In this step first we determine 𝐾+ considering to stability 
of the leader’s system and desirable dynamics then we 
determine 𝐸+ considering to dynamics of leader’s system 
and stability of observer error of leader. 

Theorem 1: Considering Assumption 1-3 are met and 
𝜼𝟎(𝒕) = 𝟎. For leader’s system (𝟔) if there exit a matrix 
𝑷𝒙𝟎 = 𝑷𝒙𝟎

𝑻 > 𝟎, a matrix 𝒀𝒙𝟎 and positive constants 𝜶𝒙𝟎, 
𝜷𝒙𝟎 and 𝝎𝒙𝟎 satisfying the following condition: 

𝛱7! = Æ
𝛱7!%% 𝓅7!%
∗ 𝓆7!%

Ç < 0  (26) 

where 
𝛱7!%% = 𝑋7!𝐴+

& + 𝐴+𝑋7! + 𝑌7!
& 𝐵+& + 𝐵+𝑌7!

+ J𝛼7! + 𝛽7!K𝑀+𝑀+
& +𝜔7!𝐼" 

𝓅7!% = N𝑋7!𝐴�+
& 𝑌7!

& 𝐵�+& 𝑋7! 𝑌7!
& O  

𝓆7!% = −𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔J𝛼7!𝐼", 𝛽7!𝐼", 𝜔7!𝜃+
$'𝐼", 𝐺D!

$%K 
Then, under control input (12)  with 𝐾+ = 𝑌7!𝑋7!

$% , the 
leader’s system is asymptotically stable with guaranteed 
cost upper bound 𝐽7!

∗ = 𝑥+&(0)𝑃7!𝑥+(0)  for the cost 
function 𝐽7! = 𝑙𝑖𝑚

,→5
N𝐼/𝑗D-(𝑡)O. 

Proof: Apply the control input (12) to the leader’s 
system (6) yields: 
𝐷/𝑥+(𝑡) = J𝐴+ + Δ𝐴+(𝑡)

+ J𝐵+ + Δ𝐵+(𝑡)K𝐾+K𝑥+(𝑡)
− J𝐵+ + Δ𝐵+(𝑡)K𝐾+𝜂+(𝑡)
+ 𝑓+J𝑥+(𝑡)K 

(27) 

Consider following Lyapunov candidate function: 
𝑉7!(𝑡) = 𝑥+&(𝑡)𝑃7!𝑥+(𝑡) (28) 

where 𝑃7! is an unknown symmetric positive-definite 
matrix. 
Taking the 𝛼-order derivative and using Lemma 3 yields: 
𝐷/𝑉7!(𝑡) ≤ §J𝐴+ + Δ𝐴+(𝑡) + J𝐵+ +
Δ𝐵+(𝑡)K𝐾+K𝑥+(𝑡) − J𝐵+ + Δ𝐵+(𝑡)K𝐾+𝜂+(𝑡) +

𝑓+J𝑥+(𝑡)K¨
&
𝑃7!𝑥+(𝑡) + 𝑥+

&(𝑡)𝑃7! §J𝐴+ +
Δ𝐴+(𝑡) + J𝐵+ + Δ𝐵+(𝑡)K𝐾+K𝑥+(𝑡) − J𝐵+ +
Δ𝐵+(𝑡)K𝐾+𝜂+(𝑡) + 𝑓+J𝑥+(𝑡)K¨  

(29) 

Assuming 𝜂+(𝑡) = 0 and using Lemma 4 yields: 
𝐷/𝑉7!(𝑡) ≤ 𝑥+&(𝑡)𝛴7!𝑥+(𝑡)  (30) 

where  
𝛴7! = (𝐴+ + 𝐵+𝐾+)&𝑃7! + 𝑃7!(𝐴+ + 𝐵+𝐾+) +
𝛼7!
$%𝐴�+&𝐴�+ + 𝛽7!

$%𝐾+&𝐵�+&𝐵�+𝐾+ +𝜔7!
$%𝜃+'𝐼" +

𝜔7!𝑃7!𝑃7! + J𝛼7! + 𝛽7!K𝑃7!𝑀+𝑀+
&𝑃7!  

According to fractional Lyapunov direct method, 
leader’s system is asymptotically stable If 𝛴7! < 0. 
Furthermore, we consider following cost function: 
𝐽7! = 𝑙𝑖𝑚

,→5
N𝐼/𝑗D-(𝑡)O  (31) 

𝑗D!(𝑡) = 𝑢+&(𝑡)𝐺D!𝑢+(𝑡) =
𝑥+&(𝑡)𝐾+&𝐺D!𝐾+𝑥+(𝑡)  

(32) 

If 𝐷/𝑉7!(𝑡) + 𝑗D!(𝑡) < 0: 
𝑗D!(𝑡) < −𝐷/𝑉7!(𝑡)  (33) 

Then for 𝑡 ∈ [0,∞), the 𝛼-order integrating both sides 
yields:  
𝐼/𝑗D-(𝑡) < 𝑉7!(0) − 𝑉7!(𝑡)  (34) 

Since 𝐷/𝑉7!(𝑡) < 0, lim
,→5

𝑉7!(𝑡) = 0, therefore: 
𝐽7! = 𝑙𝑖𝑚

,→5
N𝐼/𝑗D-(𝑡)O < 𝑉7!(0) =

𝑥+&(0)𝑃7!𝑥+(0) = 𝐽7!
∗   

(35) 

So, the upper bound 𝐽7!
∗  of the quadratic guaranteed cost 

function can be obtained. 
𝐷/𝑉7!(𝑡) + 𝑗D!(𝑡) ≤ 𝑥+&(𝑡)𝛴Î7!𝑥+(𝑡)  (36) 

where 
𝛴Î7! = (𝐴+ + 𝐵+𝐾+)&𝑃7! + 𝑃7!(𝐴+ + 𝐵+𝐾+) +
𝛼7!
$%𝐴�+&𝐴�+ + 𝛽7!

$%𝐾+&𝐵�+&𝐵�+𝐾+ +𝜔7!
$%𝜃+'𝐼" +

𝜔7!𝑃7!𝑃7! + J𝛼7! + 𝛽7!K𝑃7!𝑀+𝑀+
&𝑃7! +𝐾+

&𝐺D!𝐾+  
For linearization the inequality 𝛴Î7! < 0 by using Lemma 
5 and pre- and post-multiplying both sides of the 
inequality by 𝑋7! = 𝑃7!

$% and let 𝑌7! = 𝐾+𝑃7!
$%, the 

following obtain: 
𝑋7!𝛴Î7!𝑋7! = 𝑋7!𝐴+

& + 𝐴+𝑋7! + 𝑌7!
& 𝐵+& +

𝐵+𝑌7! + 𝛼7!
$%𝑋7!𝐴�+

&𝐴�+𝑋7! + 𝛽7!
$%𝑌7!

& 𝐵�+&𝐵�+𝑌7! +
𝜔7!
$%𝜃+'𝑋7!𝑋7! +𝜔7!𝐼" + J𝛼7! + 𝛽7!K𝑀+𝑀+

& +
𝑌7!
& 𝐺D!𝑌7! < 0  

(37) 

By employing Lemma 6, we can obtain (26) and this 
completes the proof. 

Remark 1: In solving LMI in Theorem 1, to reach the 
desirable dynamics of pseudo-state like 𝑫𝜶𝒙(𝒕) =
𝑨𝒅𝒙(𝒕), we can use objective (𝑨𝟎 − 𝑨𝒅)𝑿𝒙𝟎 +𝑩𝟎𝒀𝒙𝟎 to 
be minimized. 

Theorem 2: Suppose Assumption 1-3 are met and we 
determine 𝑲𝟎 from Theorem 1. For the leader’s system 
(𝟔) if there exit 𝑷𝒙𝟎 = 𝑷𝒙𝟎

𝑻 > 𝟎, and 𝑷𝜼𝟎 = 𝑷𝜼𝟎
𝑻 > 𝟎, a 

matrix 𝒀𝜼𝟎  and positive constants 𝜶𝜼𝟎 ، 𝜷𝜼𝟎 ، 𝜸𝜼𝟎 ، 𝜺𝜼𝟎 ، 
𝝎𝜼𝟎 ، 𝜶𝒙𝟎 ، 𝜷𝒙𝟎 ، 𝜸𝒙𝟎 and  𝝎𝒙𝟎  satisfying the following 
condition: 

𝛱C! =

⎣
⎢
⎢
⎢
⎡
𝛱C!%% 𝛱C!%' 𝓅C!% 0
∗ 𝛱C!'' 0 𝓅C!'
∗ ∗ 𝓆C!% 0
∗ ∗ ∗ 𝓆C!'⎦

⎥
⎥
⎥
⎤
< 0  

(38) 

where 
𝛱C!%% = 𝐴+&𝑃C! + 𝑃C!𝐴+ + 𝐶+

&𝑌C!
& + 𝑌C!𝐶+ + J𝛼C! +

𝛾7!K𝐾+
&𝐵�+&𝐵�+𝐾+ +𝜔C!𝜃+

'𝐼" + 𝐺C! +𝐾+
&𝐺D!𝐾+  

𝛱C!%' = −𝐾+&𝐵+&𝑃7! −𝐾+
&𝐺D!𝐾+  

𝛱C!'' = (𝐴+ + 𝐵+𝐾+)&𝑃7! + 𝑃7!(𝐴+ + 𝐵+𝐾+) +
J𝛼7! + 𝛽C!K𝐴�+

&𝐴�+ + J𝛽7! + 𝛾C!K𝐾+
&𝐵�+&𝐵�+𝐾+ +

𝜀C!𝐶�+
&𝐶�+ +𝜔7!𝜃+

'𝐼" +𝐾+&𝐺D!𝐾+  
𝓅C!% = [𝑃C!𝑀+ 𝑃C!𝑀+ 𝑃C!𝑀+ 𝑌C!𝑁+ 𝑃C!]  

𝓅C!' = [𝑃7!𝑀+ 𝑃7!𝑀+ 𝑃7!𝑀+ 𝑃7!]  
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𝓆C!% =
−𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔J𝛼C!𝐼", 𝛽C!𝐼", 𝛾C!𝐼", 𝜀C!𝐼", 𝜔C!𝐼"K  
𝓆C!' = −𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔J𝛼7!𝐼", 𝛽7!𝐼", 𝛾7!𝐼", 𝜔7!𝐼"K  

Then, under control input (12) and observer (10) with 
𝐸+ = 𝑃C!

$%𝑌C!, leader’s system and observer error are 
asymptotically stable with guaranteed cost upper bound 
𝐽7!
∗ = 𝜂+&(0)𝑃C!𝜂+(0) + 𝑥+

&(0)𝑃7!𝑥+(0) for cost function 
𝐽7! = 𝑙𝑖𝑚

,→5
µ𝐼/ §𝑗C-(𝑡) + 𝑗D-(𝑡)¨¶. 

Proof: According to observer error definition 𝜂+(𝑡) =
𝑥+(𝑡) − 𝑥�+(𝑡) we can get: 
𝐷/𝜂+(𝑡) = (𝐴+ + 𝐸+𝐶+ − 𝛥𝐵+(𝑡)𝐾+)𝜂+(𝑡) +
J𝛥𝐴+(𝑡) + 𝛥𝐵+(𝑡)𝐾+ + 𝐸+Δ𝐶+(𝑡)K𝑥+(𝑡) +
𝑓+J𝑥+(𝑡)K − 𝑓+J𝑥�+(𝑡)K  

(39) 

Consider the following Lyapunov candidate function: 
𝑉C!(𝑡) = 𝜂+&(𝑡)𝑃C!𝜂+(𝑡) + 𝑥+

&(𝑡)𝑃7!𝑥+(𝑡) (40) 

where 𝑃C! and 𝑃7!are unknown symmetric positive-
definite matrices. 
Taking the 𝛼-order derivative and using Lemma 3 yields: 
𝐷/𝑉C!(𝑡) ≤ §(𝐴+ + 𝐸+𝐶+ −
𝛥𝐵+(𝑡)𝐾+)𝜂+(𝑡) + J𝛥𝐴+(𝑡) + 𝛥𝐵+(𝑡)𝐾+ +
𝐸+Δ𝐶+(𝑡)K𝑥+(𝑡) + 𝑓+J𝑥+(𝑡)K −

𝑓+J𝑥�+(𝑡)K¨
&
𝑃C!𝜂+(𝑡) + 𝜂+

&(𝑡)𝑃C! §(𝐴+ +
𝐸+𝐶+ − 𝛥𝐵+(𝑡)𝐾+)𝜂+(𝑡) + J𝛥𝐴+(𝑡) +
𝛥𝐵+(𝑡)𝐾+ + 𝐸+Δ𝐶+(𝑡)K𝑥+(𝑡) + 𝑓+J𝑥+(𝑡)K −
𝑓+J𝑥�+(𝑡)K¨ + §J𝐴+ + Δ𝐴+(𝑡) + J𝐵+ +
Δ𝐵+(𝑡)K𝐾+K𝑥+(𝑡) − J𝐵+ + Δ𝐵+(𝑡)K𝐾+𝜂+(𝑡) +

𝑓+J𝑥+(𝑡)K¨
&
𝑃7!𝑥+(𝑡) + 𝑥+

&(𝑡)𝑃7! §J𝐴+ +
Δ𝐴+(𝑡) + J𝐵+ + Δ𝐵+(𝑡)K𝐾+K𝑥+(𝑡) − J𝐵+ +
Δ𝐵+(𝑡)K𝐾+𝜂+(𝑡) + 𝑓+J𝑥+(𝑡)K¨  

(41) 

By using Lemma 4 yields: 

𝐷/𝑉C!(𝑡) ≤ ½𝜂+
(𝑡)

𝑥+(𝑡)
¿
&

𝛴C! ½
𝜂+(𝑡)
𝑥+(𝑡)

¿  (42) 

where 

ΣC! = Æ
ΣC!%% ΣC!%'
∗ ΣC!''

Ç  

𝛴C!%% = (𝐴+ + 𝐸+𝐶+)&𝑃C! + 𝑃C!(𝐴+ + 𝐸+𝐶+) +
J𝛼C! + 𝛾7!K𝐾+

&𝐵�+&𝐵�+𝐾+ +𝜔C!𝜃+
'𝐼" +𝜔C!

$%𝑃C!𝑃C! +
J𝛼C!

$% + 𝛽C!
$% + 𝛾C!

$%K𝑃C!𝑀+𝑀+
&𝑃C! +

𝜀C!
$%𝑃C!𝐸+𝑁+𝑁+

&𝐸+&𝑃C!  
𝛴C!%' = −𝐾+&𝐵+&𝑃7!  

𝛴C!'' = (𝐴+ + 𝐵+𝐾+)&𝑃7! + 𝑃7!(𝐴+ + 𝐵+𝐾+) +
J𝛼7! + 𝛽C!K𝐴�+

&𝐴�+ + J𝛽7! + 𝛾C!K𝐾+
&𝐵�+&𝐵�+𝐾+ +

J𝛼7!
$% + 𝛽7!

$% + 𝛾7!
$%K𝑃7!𝑀+𝑀+

&𝑃7! + 𝜀C!𝐶�+
&𝐶�+ +

𝜔7!𝜃+
'𝐼" +𝜔7!

$%𝑃7!𝑃7!  
According to the fractional Lyapunov direct method, the 
leader’s observer error is asymptotically stable If 𝛴C! < 0. 
Furthermore, we consider the following cost function: 
𝐽7! = 𝑙𝑖𝑚

,→5
µ𝐼/ §𝑗C-(𝑡) + 𝑗D-(𝑡)¨¶  (43) 

𝑗C!(𝑡) = 𝜂+&(𝑡)𝐺C!𝜂+(𝑡) (44) 

𝑗D!(𝑡) = 𝑢+&(𝑡)𝐺D!𝑢+(𝑡) = J𝑥+(𝑡) −
𝜂+(𝑡)K

&𝐾+&𝐺D!𝐾+J𝑥+(𝑡) − 𝜂+(𝑡)K  
(45) 

If 𝐷/𝑉C!(𝑡) + 𝑗C-(𝑡) + 𝑗D!(𝑡) < 0: 
𝑗C-(𝑡) + 𝑗D!(𝑡) < −𝐷/𝑉C!(𝑡)  (46) 

Then for 𝑡 ∈ [0,∞), the 𝛼-order integrating both sides 
yields:  
𝐼/ §𝑗C-(𝑡) + 𝑗D-(𝑡)¨ < 𝑉C!(0) − 𝑉C!(𝑡)  (47) 

Since 𝐷/𝑉C!(𝑡) < 0, lim
,→5

𝑉C!(𝑡) = 0, therefore: 

𝐽7! = 𝑙𝑖𝑚
,→5

µ𝐼/ §𝑗C-(𝑡) + 𝑗D-(𝑡)¨¶ < 𝑉C!(0) =
𝜂+&(0)𝑃C!𝜂+(0) + 𝑥+

&(0)𝑃7!𝑥+(0) = 𝐽7!
∗   

(48) 

So, the upper bound 𝐽7!
∗  of the quadratic guaranteed cost 

function can be obtained. 
𝐷/𝑉C!(𝑡) + 𝑗C-(𝑡) + 𝑗D!(𝑡) ≤

½𝜂+
(𝑡)

𝑥+(𝑡)
¿
&

𝛴ÎC! ½
𝜂+(𝑡)
𝑥+(𝑡)

¿  
(49) 

where 

ΣÎC! = Û
ΣÎC!%% ΣÎC!%'
∗ ΣÎC!''

Ü  

ΣÎC!%% = (𝐴+ + 𝐸+𝐶+)&𝑃C! + 𝑃C!(𝐴+ + 𝐸+𝐶+) +
J𝛼C! + 𝛾7!K𝐾+

&𝐵�+&𝐵�+𝐾+ +𝜔C!𝜃+
'𝐼" +𝜔C!

$%𝑃C!𝑃C! +
J𝛼C!

$% + 𝛽C!
$% + 𝛾C!

$%K𝑃C!𝑀+𝑀+
&𝑃C! +

𝜀C!
$%𝑃C!𝐸+𝑁+𝑁+

&𝐸+&𝑃C! + 𝐺C! +𝐾+
&𝐺D!𝐾+  

ΣÎC!%' = −𝐾+&𝐵+&𝑃7! −𝐾+
&𝐺D!𝐾+  

ΣÎC!'' = (𝐴+ + 𝐵+𝐾+)&𝑃7! + 𝑃7!(𝐴+ + 𝐵+𝐾+) +
J𝛼7! + 𝛽C!K𝐴�+

&𝐴�+ + J𝛽7! + 𝛾C!K𝐾+
&𝐵�+&𝐵�+𝐾+ +

J𝛼7!
$% + 𝛽7!

$% + 𝛾7!
$%K𝑃7!𝑀+𝑀+

&𝑃7! + 𝜀C!𝐶�+
&𝐶�+ +

𝜔7!𝜃+
'𝐼" +𝜔7!

$%𝑃7!𝑃7! +𝐾+
&𝐺D!𝐾+  

By employing Lemma 6 and let 𝒀𝜼𝟎 = 𝑷𝜼𝟎𝑬𝟎, we can 
obtain (38) and this completes the proof. 

Step 2: Stability of virtual consensus errors    
In this step, we determine 𝐹)  and 𝑇)  considering to 
stability of virtual consensus errors. 

Theorem 3: Suppose Assumption 1-4 are met and we 
determine 𝑲𝟎  and 𝑬𝟎  from Step 1. For virtual systems 
(11) if there exist matrices 𝑿𝜻 = 𝑿𝜻𝑻 > 𝟎, and 𝑻ß𝒊 = 𝑻ß𝒊

𝑻 >
𝟎, a matrix 𝒀𝜻 and positive constants 𝝎𝜻𝒊  satisfying the 
following condition: 

𝛱G = à

𝛱G%% 𝑌G 𝓅G%
∗ −𝑇Î 𝓅G'
∗ ∗ 𝓆G%

á < 0  
(50) 

where 
𝛱G%% = 𝐼!⨂J𝑋G(𝐴+ + 𝐵+𝐾+)& + (𝐴+ + 𝐵+𝐾+)𝑋GK +
𝜔G + 𝑌G& + 𝑌G  
 
𝓅G% = N𝐼!⨂𝑋G J𝐼!⨂𝑋GK(𝐻&⨂𝐼") 𝐼!⨂𝑋G 𝑌G&O 
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𝓅G' = N0 J𝐼!⨂𝑋GK(𝐻&⨂𝐼") 0 𝑌G&O  

𝓆G% = −𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔J𝜔G𝜃+$', 𝜌$%𝑄$%, 𝐺G$%, 𝐺H$%K  

Then, under the event-triggered consensus control 
protocol ( 14 ) with 𝐹) = 𝑌)𝑋G$%  and 𝑇) = 𝑋G$%𝑇Î)𝑋G$% , 
virtual consensus errors are asymptotically stable with 
guaranteed cost upper bound 𝐽7F∗ = 𝜁&(0)J𝐼!⨂𝑃GK𝜁(0) 
for cost function 𝐽7F = 𝑙𝑖𝑚

,→5
µ𝐼/ §𝑗G(𝑡) + 𝑗H(𝑡)¨¶. 

Proof: According virtual consensus errors definition 
𝜁)(𝑡) = 𝑥¡)(𝑡) − 𝑥�+(𝑡) we can get: 
𝐷/𝜁)(𝑡) = (𝐴+ + 𝐵+𝐾+)𝜁)(𝑡) + 𝐹)𝑣)(𝑡) +
𝑓+J𝑥¡)(𝑡)K − 𝑓+J𝑥�+(𝑡)K + 𝐸+𝐶+𝜂+(𝑡) +
𝐸+Δ𝐶+(𝑡)𝑥+(𝑡)  

(51) 

Consider the following Lyapunov candidate function: 

𝑉G(𝑡) =â𝑉G)(𝑡)
!

)*%

, 𝑉G)(𝑡) = 𝜁)&(𝑡)𝑃G𝜁)(𝑡) 
(52) 

where 𝑃G is an unknown symmetric positive-definite 
matrix. 
Taking the 𝛼-order derivative and using Lemma 3 yields: 
𝐷/𝑉G)(𝑡) ≤ 𝐷/𝜁)&(𝑡)𝑃G𝜁)(𝑡) +
𝜁)&(𝑡)𝑃G𝐷/𝜁)(𝑡) = N(𝐴+ + 𝐵+𝐾+)𝜁)(𝑡) +
𝐹)𝑣)(𝑡) + 𝑓+J𝑥¡)(𝑡)K − 𝑓+J𝑥�+(𝑡)K +
𝐸+𝐶+𝜂+(𝑡) + 𝐸+Δ𝐶+(𝑡)𝑥+(𝑡)O

&𝑃G𝜁)(𝑡) +
𝜁)&(𝑡)𝑃GN(𝐴+ + 𝐵+𝐾+)𝜁)(𝑡) + 𝐹)𝑣)(𝑡) +
𝑓+J𝑥¡)(𝑡)K − 𝑓+J𝑥�+(𝑡)K + 𝐸+𝐶+𝜂+(𝑡) +
𝐸+Δ𝐶+(𝑡)𝑥+(𝑡)O  

(53) 

In Step 1 we prove 𝜂+(𝑡) and 𝑥+(𝑡) are asymptotically 
stable then: 
lim
,→5

§𝜂+&(𝑡)𝐶+&𝐸+&𝑃G𝜁)(𝑡) + 𝜁)&(𝑡)𝑃G𝐸+𝐶+𝜂+(𝑡)¨
= 0 

(54) 

lim
,→5

§𝑥+&(𝑡)Δ𝐶+&(𝑡)𝐸+&𝑃G𝜁)(𝑡)

+ 𝜁)&(𝑡)𝑃G𝐸+Δ𝐶+(𝑡)𝑥+(𝑡)¨
= 0 

(55) 

And we ignore these parts. Using Lemma 4, yields: 
𝐷/𝑉G)(𝑡) ≤ 𝜁)&(𝑡)J(𝐴+ + 𝐵+𝐾+)&𝑃G + 𝑃G(𝐴+ +
𝐵+𝐾+) + 𝜔G)

$%𝜃+'𝐼" +𝜔G)𝑃G𝑃GK𝜁)(𝑡) +
𝑣)&(𝑡)𝐹)&𝑃G𝜁)(𝑡) + 𝜁)&(𝑡)𝑃G𝐹)𝑣)(𝑡)  

(56) 

We can obtain the following from the event-triggered 
consensus control protocol: 
𝑣)(𝑡) = ∑ 𝑎)( ¦𝑥¡)J𝑡B)

) K − 𝑥¡( §𝑡B*
( ¨©!

(*% +

𝑏) §𝑥¡)J𝑡B)
) K − 𝑥�+(𝑡)¨ = ∑ 𝑎)( §𝑥¡)(𝑡) +!

(*%

𝑒)(𝑡) − 𝑥¡((𝑡) − 𝑒((𝑡)¨ + 𝑏)J𝑥¡)(𝑡) + 𝑒)(𝑡) −

𝑥�+(𝑡)K = ∑ 𝑎)( §𝜁)(𝑡) + 𝑒)(𝑡) − 𝜁((𝑡) −!
(*%

𝑒((𝑡)¨ + 𝑏)J𝜁)(𝑡) + 𝑒)(𝑡)K = ∑ ℎ)( §𝑒((𝑡) +!
(*%

𝜁((𝑡)¨  

(57) 

This yields that: 
𝐷/𝑉G(𝑡) ≤ ∑ ¦𝜁)&(𝑡)J(𝐴+ + 𝐵+𝐾+)&𝑃G +!

)*%

𝑃G(𝐴+ + 𝐵+𝐾+) + 𝜔G)
$%𝜃+'𝐼" +𝜔G)𝑃G𝑃GK𝜁)(𝑡) +

(58) 

µ∑ ℎ)(𝐹) §𝑒((𝑡) + 𝜁((𝑡)¨!
(*% ¶

&
𝑃G𝜁)(𝑡) +

𝜁)&(𝑡)𝑃G µ∑ ℎ)(𝐹) §𝑒((𝑡) + 𝜁((𝑡)¨!
(*% ¶©  

where 
𝜁(𝑡) = [𝜁%&(𝑡), … , 𝜁!&(𝑡)]& ∈ ℝ!"×% 
𝑒(𝑡) = [𝑒%&(𝑡), … , 𝑒!&(𝑡)]& ∈ ℝ!"×% 

𝐹 = [(ℎ%⨂𝐹%)& , … , (ℎ!⨂𝐹!)&]& ∈ ℝ!"×!",
ℎ) ≜ 𝑖𝑡ℎ	𝑟𝑜𝑤	𝑜𝑓	ℋ 

𝜔G = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔J𝜔G'𝐼", 𝜔G.𝐼", … , 𝜔G/𝐼"K ∈ ℝ
!"×!" 

𝑇 = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔(𝑇%, 𝑇', … , 𝑇!) ∈ ℝ!"×!" 

𝑄 = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔(𝑄%, 𝑄', … , 𝑄!) ∈ ℝ!"×!" 

𝐺G = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔(𝐺G' , … , 𝐺G/)  

𝐺H = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔(𝐺H' , … , 𝐺H/)  

Then (58) can be written into a compact form as follows: 
𝐷/𝑉G(𝑡) ≤ 𝜁&(𝑡) §𝐼!⨂§(𝐴+ + 𝐵+𝐾+)&𝑃G +

𝑃G(𝐴+ + 𝐵+𝐾+)¨ + J𝐼!⨂𝑃GK𝜔GJ𝐼!⨂𝑃GK +

𝜔G$%𝜃+'¨ 𝜁(𝑡) + J𝜁(𝑡) +

𝑒(𝑡)K&𝐹&J𝐼!⨂𝑃GK𝜁(𝑡) +
𝜁&(𝑡)J𝐼!⨂𝑃GK𝐹J𝜁(𝑡) + 𝑒(𝑡)K  

(59) 

Based on conditions (15) and (59) the following 
inequality is derived: 

𝐷/𝑉G(𝑡) ≤ ½𝜁
(𝑡)
𝑒(𝑡)¿

&
ΣG ½

𝜁(𝑡)
𝑒(𝑡)¿ 	+

∑ {𝑒)&(𝑡)𝑇)𝑒)(𝑡) − 𝜌𝑣)&(𝑡)𝑄)𝑣)(𝑡)}!
)*% =

½𝜁
(𝑡)
𝑒(𝑡)¿

&
ΣG ½

𝜁(𝑡)
𝑒(𝑡)¿ 	+ 𝑒

&(𝑡)𝑇𝑒(𝑡) −

𝜌∑ çµ∑ ℎ)( §𝜁((𝑡) +!
(*%

!
)*%

𝑒((𝑡)¨¶
&
𝑄) µ∑ ℎ)( §𝜁((𝑡) + 𝑒((𝑡)¨!

(*% ¶è =

½𝜁
(𝑡)
𝑒(𝑡)¿

&
ΣG ½

𝜁(𝑡)
𝑒(𝑡)¿ + 𝑒

&(𝑡)𝑇𝑒(𝑡) − 𝜌J𝜁(𝑡) +

𝑒(𝑡)K&J𝐻&⨂𝐼PK𝑄J𝐻⨂𝐼PKJ𝜁(𝑡) + 𝑒(𝑡)K   

(60) 

where 

ΣG = Æ
ΣG%% ΣG%'
∗ ΣG''

Ç  

ΣG%% = 𝐼!⨂§(𝐴+ + 𝐵+𝐾+)&𝑃G + 𝑃G(𝐴+ + 𝐵+𝐾+)¨ +
𝜔G$%𝜃+' + J𝐼!⨂𝑃GK𝜔GJ𝐼!⨂𝑃GK + 𝐹&J𝐼!⨂𝑃GK +
J𝐼!⨂𝑃GK𝐹 + 𝜌J𝐻&⨂𝐼PK𝑄J𝐻⨂𝐼PK  
ΣG%' = J𝐼!⨂𝑃GK𝐹 + 𝜌J𝐻&⨂𝐼PK𝑄J𝐻⨂𝐼PK  

ΣG'' = −𝑇 + 𝜌J𝐻&⨂𝐼PK𝑄J𝐻⨂𝐼PK  

According to the fractional Lyapunov direct method, 
virtual consensus errors are asymptotically stable if ΣG <
0. 
Furthermore, we consider the following cost function: 
𝐽7F = 𝑙𝑖𝑚

,→5
µ𝐼/ §𝑗G(𝑡) + 𝑗H(𝑡)¨¶ (61) 

𝑗G(𝑡) = ∑ 𝜁)&(𝑡)𝐺G)𝜁)(𝑡)²
!
)*% = 𝜁&(𝑡)𝐺G𝜁(𝑡)  (62) 
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𝑗H(𝑡) = ∑ 𝑣)&(𝑡)𝐹)&𝐺H)𝐹)𝑣)(𝑡)²
!
)*% = J𝜁(𝑡) +

𝑒(𝑡)K&𝐹&𝐺H𝐹J𝜁(𝑡) + 𝑒(𝑡)K  
(63) 

If 𝐷/𝑉G(𝑡) + 𝑗G(𝑡) + 𝑗H(𝑡) < 0: 
𝑗G(𝑡) + 𝑗H(𝑡) < −𝐷/𝑉G(𝑡)  (64) 

Then for 𝑡 ∈ [0,∞), the 𝛼-order integrating both sides 
yields:  
𝐼/ §𝑗G(𝑡) + 𝑗H(𝑡)¨ < 𝑉G(0) − 𝑉G(𝑡)  (65) 

Since 𝐷/𝑉G(𝑡) < 0, lim
,→5

𝑉G(𝑡) = 0, therefore: 

𝐽7F = µ𝐼/ §𝑗G(𝑡) + 𝑗H(𝑡)¨¶ < 𝑉G(0) =
𝜁&(0)J𝐼!⨂𝑃GK𝜁(0) = 𝐽7F∗  

(66) 

So, the upper bound 𝐽7F∗ of the quadratic guaranteed cost 
function can be obtained. 

𝐷/𝑉G(𝑡) + 𝑗G(𝑡) + 𝑗H(𝑡) ≤ ½𝜁
(𝑡)
𝑒(𝑡)¿

&
ΣÎG ½

𝜁(𝑡)
𝑒(𝑡)¿ +

∑ {𝑒)&(𝑡)𝑇)𝑒)(𝑡) − 𝜌𝑣)&(𝑡)𝑄)𝑣)(𝑡)}!
)*%   

(67) 

where 

ΣÎG = Û
ΣÎG%% ΣÎG%'
∗ ΣÎG''

Ü 

ΣÎG%% = 𝐼!⨂§(𝐴+ + 𝐵+𝐾+)&𝑃G + 𝑃G(𝐴+ + 𝐵+𝐾+)¨ +
𝜔G$%𝜃+' + J𝐼!⨂𝑃GK𝜔GJ𝐼!⨂𝑃GK + 𝐹&J𝐼!⨂𝑃GK +
J𝐼!⨂𝑃GK𝐹 + 𝜌J𝐻&⨂𝐼PK𝑄J𝐻⨂𝐼PK + 𝐺G + 𝐹&𝐺H𝐹  
ΣÎG%' = J𝐼!⨂𝑃GK𝐹 + 𝜌J𝐻&⨂𝐼PK𝑄J𝐻⨂𝐼PK + 𝐹&𝐺H𝐹  

ΣÎG'' = −𝑇 + 𝜌J𝐻&⨂𝐼PK𝑄J𝐻⨂𝐼PK + 𝐹&𝐺H𝐹  

For linearization of the inequality ΣÎG < 0 by using 
Lemma 5 and pre- and post-multiplying both sides of the 
inequality by 𝑇G = 𝐼'×!⨂𝑃G$% and let 𝑋G = 𝑃G$%, 𝑌) =
𝐹)𝑃G$%, 𝑌G = [(ℎ%⨂𝑌%)& , … , (ℎ!⨂𝑌!)&]&, 𝑇Î) = 𝑋G𝑇)𝑋G 
and 𝑇Î = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔J𝑇Î%, 𝑇Î', … , 𝑇Î!K the following obtain: 

𝑇GΣÎG𝑇G = 𝛴éG = Û
𝛴éG%% 𝛴éG%'
∗ 𝛴éG''

Ü < 0  (68) 

where  
𝛴éG%% = 𝐼!⨂J𝑋G(𝐴+ + 𝐵+𝐾+)& + (𝐴+ + 𝐵+𝐾+)𝑋GK +
J𝐼!⨂𝑋GK𝜔G$%𝜃+'J𝐼!⨂𝑋GK + 𝜔G + 𝑌G& + 𝑌G +
𝜌J𝐼!⨂𝑋GKJ𝐻&⨂𝐼PK𝑄J𝐻⨂𝐼PKJ𝐼!⨂𝑋GK +
J𝐼!⨂𝑋GK𝐺GJ𝐼!⨂𝑋GK + 𝑌G&𝐺H𝑌G  
𝛴éG%' = 𝑌G +
𝜌J𝐼!⨂𝑋GKJ𝐻&⨂𝐼PK𝑄J𝐻⨂𝐼PKJ𝐼!⨂𝑋GK + 𝑌G&𝐺H𝑌G  
𝛴éG'' = −𝑇Î +
𝜌J𝐼!⨂𝑋GKJ𝐻&⨂𝐼PK𝑄J𝐻⨂𝐼PKJ𝐼!⨂𝑋GK + 𝑌G&𝐺H𝑌G  

By employing Lemma 6, we can obtain (50) and this 
completes the proof. 
Step 3: Stability of followers' systems and consensus 
errors and observer errors for followers.  
In this step for each follower first, we determine 𝐾) and 
𝑊)  considering to stability of follower’s system and 
consensus errors then we determine 𝐸)  considering to 
dynamics of followers' system and stability of observers' 
errors. 

Theorem 4: Suppose Assumption 1-4 are met and we 
determine 𝑲𝟎  and 𝑬𝟎  from Step 1 and 𝑭𝒊  and 𝑻𝒊  from 

Step 2 and 𝜼𝒊(𝒕) = 𝟎. For 𝒊th follower’s system (𝟔) if 
there exit matrices 𝑿𝒙𝒊 = 𝑿𝒙𝒊

𝑻 > 𝟎,  and 𝑿𝝋𝒊 = 𝑿𝝋𝒊
𝑻 > 𝟎 

and matrices 𝒀𝒙𝒊 and 𝒀𝝋𝒊 and positive constants 𝜶𝝋𝒊 ,	𝜷𝝋𝒊 ,	
𝜸𝝋𝒊 ,	𝝎𝝋𝒊 ,	𝜶𝒙𝒊 ,	𝜷𝒙𝒊 ,	𝜸𝒙𝒊 	and	𝝎𝒙𝒊  satisfying the following 
condition: 

𝛱E) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝛱E)%% 𝛱E)%' 𝓅E)% 0 𝑌E)

&

∗ 𝛱E)'' 0 𝓅E)' 𝑌7)
&

∗ ∗ 𝓆E)% 0 0
∗ ∗ ∗ 𝓆E)' 0
∗ ∗ ∗ ∗ −𝐺D)

$%⎦
⎥
⎥
⎥
⎥
⎥
⎤

< 0  

(69) 

where 
𝛱E)%% = 𝑋E)(𝐴+ + 𝐵+𝐾+)

& + (𝐴+ + 𝐵+𝐾+)𝑋E) +
𝑌E)
&𝐵)& + 𝐵)𝑌E) + JαR0 + βR0 + γR0K𝑀)𝑀)

& +ωR0𝐼"  
𝛱E)%' = (𝐴) − 𝐴+ − 𝐵+𝐾+)𝑋7) + 𝐵)𝑌7) + 𝑌E)

&𝐵)&  

𝛱E)'' = 𝑋7)𝐴)
& + 𝐴)𝑋7) + 𝑌7)

&𝐵)& + 𝐵)𝑌7) + JαS0 +
βS0 + γS0K𝑀)𝑀)

& +ωS0𝐼")  
𝓅E)% = N𝑌E)

&𝐵�)& 𝑌E)
&𝐵�)& 𝑋E) 𝑋E)O  

𝓅E)' = N𝑋7)𝐴�)
& 𝑋7)𝐴�)

& 𝑌7)
&𝐵�)& 𝑌7)

&𝐵�)& 𝑋7)O  

𝓆E)% = −𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔JαR0𝐼", γS0𝐼", ωR0𝜎)
$'𝐼", 𝐺E)

$%K  
𝓆E)' =
−𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔JαS0𝐼", βR0𝐼", βS0𝐼", γR0𝐼", ωS0𝜃)

$'𝐼"K  
Then, under control input (12)  with 𝐾) = 𝑌7)𝑋7)

$%  and 
𝑊) = 𝑌E)𝑋E)

$%, 𝑖th follower’s system and consensus error 
is asymptotically stable with guaranteed cost upper bound 
𝐽7)
∗ = 𝜑)&(0)𝑃E)𝜑)(0) + 𝑥)

&(0)𝑃7)𝑥)(0)  for cost function 
𝐽7) = 𝑙𝑖𝑚

,→5
µ𝐼/ §𝑗E)(𝑡) + 𝑗D)(𝑡)¨¶. 

Proof: Apply the control input (12) to 𝑖th follower’s 
system (6) yields: 
𝐷/𝑥)(𝑡) = (𝐴) + Δ𝐴) + (𝐵) + Δ𝐵))𝐾))𝑥)(𝑡) −
(𝐵) + Δ𝐵))𝐾)𝜂)(𝑡) + (𝐵) + Δ𝐵))𝑊)J𝜑)(𝑡) −
𝜂)(𝑡)K + 𝑓)J𝑥)(𝑡)K  

(70) 

According to the 𝑖th follower’s consensus errors 
definition 𝜑)(𝑡) = 𝑥)(𝑡) − 𝑥¡)(𝑡) we can get: 
𝐷/𝜑)(𝑡) = (𝐴+ + 𝐵+𝐾+ + (𝐵) +
Δ𝐵))𝑊))𝜑)(𝑡) + (𝐴) + 𝐵)𝐾) + Δ𝐴) + Δ𝐵)𝐾) −
𝐴+ − 𝐵+𝐾+)𝑥)(𝑡) − (𝐵) + Δ𝐵))(𝐾) +
𝑊))𝜂)(𝑡) + 𝑓)J𝑥)(𝑡)K − 𝑓+J𝑥¡)(𝑡)K − 𝐹)𝑣)(𝑡)  

(71) 

Consider the following Lyapunov candidate function: 
𝑉E)(𝑡) = 𝜑)&(𝑡)𝑃E)𝜑)(𝑡) + 𝑥)

&(𝑡)𝑃7)𝑥)(𝑡)  (72) 

where 𝑃E) and 𝑃7) are unknown symmetric positive-
definite matrices. 
Taking the 𝛼-order derivative and using Lemma 3 yields: 
𝐷/𝑉E)(𝑡) ≤ §(𝐴+ + 𝐵+𝐾+ + (𝐵) +
Δ𝐵))𝑊))𝜑)(𝑡) + (𝐴) + 𝐵)𝐾) + Δ𝐴) + Δ𝐵)𝐾) −
𝐴+ − 𝐵+𝐾+)𝑥)(𝑡) − (𝐵) + Δ𝐵))(𝐾) +
𝑊))𝜂)(𝑡) + 𝑓)J𝑥)(𝑡)K − 𝑓+J𝑥¡)(𝑡)K −

𝐹)𝑣)(𝑡)	¨
&
𝑃E)𝜑)(𝑡) + 𝜑)

&(𝑡)𝑃E) §(𝐴+ +
𝐵+𝐾+ + (𝐵) + Δ𝐵))𝑊))𝜑)(𝑡) + (𝐴) + 𝐵)𝐾) +
Δ𝐴) + Δ𝐵)𝐾) − 𝐴+ − 𝐵+𝐾+)𝑥)(𝑡) − (𝐵) +
Δ𝐵))(𝐾) +𝑊))𝜂)(𝑡) + 𝑓)J𝑥)(𝑡)K − 𝑓+J𝑥¡)(𝑡)K −

(73) 
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𝐹)𝑣)(𝑡)	¨ + §(𝐴) + Δ𝐴) + (𝐵) +
Δ𝐵))𝐾))𝑥)(𝑡) − (𝐵) + Δ𝐵))𝐾)𝜂)(𝑡) + (𝐵) +
Δ𝐵))𝑊)J𝜑)(𝑡) − 𝜂)(𝑡)K +

𝑓)J𝑥)(𝑡)K¨
&
𝑃7)𝑥)(𝑡) + 𝑥)

&(𝑡)𝑃7) §(𝐴) + Δ𝐴) +
(𝐵) + Δ𝐵))𝐾))𝑥)(𝑡) − (𝐵) + Δ𝐵))𝐾)𝜂)(𝑡) +
(𝐵) + Δ𝐵))𝑊)J𝜑)(𝑡) − 𝜂)(𝑡)K + 𝑓)J𝑥)(𝑡)K¨  

In Step 2 we prove 𝜁(𝑡)  is asymptotically stable so 
𝑣)(𝑡) = ∑ ℎ)( §𝑒((𝑡) + 𝜁((𝑡)¨!

(*%  is asymptotically stable 
then: 
lim
,→5

§−𝑣)&(𝑡)𝐹)&𝑃E)𝜑)(𝑡) − 𝜑)
&(𝑡)𝑃E)𝐹)𝑣)(𝑡)¨

= 0 
(74) 

and we ignore this part. Assuming 𝜂)(𝑡) = 0 and using 
Lemma 4 yields: 

𝐷/𝑉E)(𝑡) ≤ ½𝜑)
(𝑡)

𝑥)(𝑡)
¿
&

ΣE) ½
𝜑)(𝑡)
𝑥)(𝑡)

¿  (75) 

where  

𝛴E) = Æ
𝛴E)%% 𝛴E)%'
∗ 𝛴E)''

Ç  

𝛴E)%% = (𝐴+ + 𝐵+𝐾+ + 𝐵)𝑊))&𝑃E) + 𝑃E)(𝐴+ +
𝐵+𝐾+ + 𝐵)𝑊)) + J𝛼E)

$% + 𝛾7)
$%K𝑊)

&𝐵�)&𝐵�)𝑊) +
J𝛼E) + 𝛽E) + 𝛾E)K𝑃E)𝑀)𝑀)

&𝑃E) +𝜔E)𝑃E)𝑃E) +
𝜔E)
$%𝜎)'𝐼"  

𝛴E)%' = 𝑃E)(𝐴) + 𝐵)𝐾) − 𝐴+ − 𝐵+𝐾+) +𝑊)
&𝐵)&𝑃7)  

𝛴E)'' = (𝐴) + 𝐵)𝐾))&𝑃7) + 𝑃7)(𝐴) + 𝐵)𝐾)) +
J𝛼7)

$% + 𝛽E)
$%K𝐴�)&𝐴�) + J𝛽7)

$% + 𝛾E)
$%K𝐾)&𝐵�)&𝐵�)𝐾) +

J𝛼7) + 𝛽7) + 𝛾7)K𝑃7)𝑀)𝑀)
&𝑃7) +𝜔7)

$%𝜃)'𝐼" +𝜔7)𝑃7)𝑃7)  
According to the fractional Lyapunov direct method, 𝑖th 
follower’s system and consensus error are asymptotically 
stable If 𝛴E) < 0. 
Furthermore, we consider the following cost function: 
𝐽7) = 𝑙𝑖𝑚

,→5
µ𝐼/ §𝑗E)(𝑡) + 𝑗D)(𝑡)¨¶  (76) 

𝑗E)(𝑡) = 𝜑)&(𝑡)𝐺E)𝜑)(𝑡)  (77) 

𝑗D)(𝑡) = 𝑢)&(𝑡)𝐺D)𝑢)(𝑡) = J𝐾)𝑥)(𝑡) +
𝑊)𝜑)(𝑡)K

&𝐺D)J𝐾)𝑥)(𝑡) +𝑊)𝜑)(𝑡)K  
(78) 

If 𝐷/𝑉E)(𝑡) + 𝑗E)(𝑡) + 𝑗D)(𝑡) < 0: 
𝑗E)(𝑡) + 𝑗D)(𝑡) < −𝐷/𝑉E)(𝑡)  (79) 

Then for 𝑡 ∈ [0,∞), the 𝛼-order integrating both sides 
yields:  
𝐼/ §𝑗E)(𝑡) + 𝑗D)(𝑡)¨ < 𝑉E)(0) − 𝑉E)(𝑡)  (80) 

Since 𝐷/𝑉E)(𝑡) < 0, lim
,→5

𝑉E)(𝑡) = 0, therefore: 

𝐽7) = 𝑙𝑖𝑚
,→5

µ𝐼/ §𝑗E)(𝑡) + 𝑗D)(𝑡)¨¶ < 𝑉E)(0) =
𝜑)&(0)𝑃E)𝜑)(0) + 𝑥)

&(0)𝑃7)𝑥)(0) = 𝐽7)
∗   

(81) 

So, the upper bound 𝐽7)
∗  of the quadratic guaranteed cost 

function can be obtained. 
𝐷/𝑉E)(𝑡) + 𝑗E)(𝑡) + 𝑗D)(𝑡) ≤

½𝜑)
(𝑡)

𝑥)(𝑡)
¿
&

𝛴ÎE) ½
𝜑)(𝑡)
𝑥)(𝑡)

¿  
(82) 

where 

𝛴ÎE) = Û
𝛴ÎE)%% 𝛴ÎE)%'
∗ 𝛴ÎE)''

Ü  

𝛴ÎE)%% = (𝐴+ + 𝐵+𝐾+ + 𝐵)𝑊))&𝑃E) + 𝑃E)(𝐴+ +
𝐵+𝐾+ + 𝐵)𝑊)) + J𝛼E)

$% + 𝛾7)
$%K𝑊)

&𝐵�)&𝐵�)𝑊) +
J𝛼E) + 𝛽E) + 𝛾E)K𝑃E)𝑀)𝑀)

&𝑃E) +𝜔E)𝑃E)𝑃E) +
𝜔E)
$%𝜎)'𝐼" + 𝐺E) +𝑊)

&𝐺D)𝑊)  
𝛴ÎE)%' = 𝑃E)(𝐴) + 𝐵)𝐾) − 𝐴+ − 𝐵+𝐾+) +𝑊)

&𝐵)&𝑃7) +
𝑊)

&𝐺D)𝐾)  
𝛴ÎE)'' = (𝐴) + 𝐵)𝐾))&𝑃7) + 𝑃7)(𝐴) + 𝐵)𝐾)) +
J𝛼7)

$% + 𝛽E)
$%K𝐴�)&𝐴�) + J𝛽7)

$% + 𝛾E)
$%K𝐾)&𝐵�)&𝐵�)𝐾) +

J𝛼7) + 𝛽7) + 𝛾7)K𝑃7)𝑀)𝑀)
&𝑃7) +𝜔7)

$%𝜃)'𝐼" +
𝜔7)𝑃7)𝑃7) +𝐾)

&𝐺D)𝐾)  
For linearization of the inequality 𝛴ÎE) < 0  by using 
Lemma 5 and pre- and post-multiplying both sides of the 
inequality by 𝑇E) = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔J𝑃E)

$%, 𝑃7)
$%K and let 𝑋E) =

𝑃E)
$% , 𝑋7) = 𝑃7)

$% , 𝑌E) = 𝑊)𝑃E)
$%  and 𝑌7) = 𝐾)𝑃7)

$% , the 
following obtain: 

𝑇E)𝛴ÎE)𝑇E) = 𝛴éE) = Û
𝛴éE)%% 𝛴éE)%'
∗ 𝛴éE)''

Ü  (83) 

where  
𝛴éE)%% = 𝑋E)(𝐴+ + 𝐵+𝐾+)

& + (𝐴+ + 𝐵+𝐾+)𝑋E) +
𝑌E)
&𝐵)& + 𝐵)𝑌E) + J𝛼E)

$% + 𝛾7)
$%K𝑌E)

&𝐵�)&𝐵�)𝑌E) +
J𝛼E) + 𝛽E) + 𝛾E)K𝑀)𝑀)

& +𝜔E)𝐼" +𝜔E)
$%𝜎)'𝑋E)𝑋E) +

𝑋E)𝐺E)𝑋E) + 𝑌E)
& 𝐺D)𝑌E)  

𝛴éE)%' = (𝐴) − 𝐴+ − 𝐵+𝐾+)𝑋7) + 𝐵)𝑌7) + 𝑌E)
&𝐵)& +

𝑌E)
& 𝐺D)𝑌7)  
𝛴éE)'' = 𝑋7)𝐴)

& + 𝐴)𝑋7) + 𝑌7)
&𝐵)& + 𝐵)𝑌7) + J𝛼7)

$% +
𝛽E)
$%K𝑋7)𝐴�)

&𝐴�)𝑋7) + J𝛽7)
$% + 𝛾E)

$%K𝑌7)
&𝐵�)&𝐵�)𝑌7) +

J𝛼7) + 𝛽7) + 𝛾7)K𝑀)𝑀)
& +𝜔7)

$%𝜃)'𝑋7)𝑋7) +𝜔7)𝐼" +
𝑌7)
&𝐺D)𝑌7)  

By employing Lemma 6, we can obtain (69) and this 
completes the proof. 

Theorem 5: Suppose Assumption 1-4 are met and we 
determine 𝑲𝟎  and 𝑬𝟎  from Step 1 and 𝑭𝒊  and 𝑻𝒊  from 
Step 2 and 𝑲𝒊 and 𝑾𝒊 from Theorem 5. For 𝒊th follower’s 
system (𝟔) if there exit mtrices 𝑷𝒙𝟎 = 𝑷𝒙𝟎

𝑻 > 𝟎, 𝑷𝝋𝒊 =
𝑷𝝋𝒊
𝑻 > 𝟎  and 𝑷𝜼𝒊 = 𝑷𝜼𝒊

𝑻 > 𝟎  and a matrix 𝒀𝜼𝒊  and 
positive constants 𝜶𝜼𝒊 , 𝜷𝜼𝒊 ,	𝜸𝜼𝒊 ,	𝝎𝜼𝒊 ,	𝜺𝜼𝒊 ,	𝝐𝜼𝒊 ,	𝜶𝝋𝒊 ,	𝜷𝝋𝒊 ,	
𝜸𝝋𝒊 ,	𝜺𝝋𝒊 ,	𝝎𝝋𝒊 ,	𝜶𝒙𝒊 ,	𝜷𝒙𝒊 ,	𝜸𝒙𝒊 ,	𝜺𝒙𝒊 	and	𝝎𝒙𝒊  satisfying the 
following condition: 

𝛱C) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝛱C)%% 𝛱C)%' 𝛱C)%= 𝓅C)% 0 0
∗ 𝛱C)'' 𝛱C)'= 0 𝓅C)' 0
∗ ∗ 𝛱C)== 0 0 𝓅C)=
∗ ∗ ∗ 𝓆C)% 0 0
∗ ∗ ∗ ∗ 𝓆C)' 0
∗ ∗ ∗ ∗ ∗ 𝓆C)=⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

<

0  

(84) 

where 
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𝛱C)%% = 𝐴)&𝑃C) + 𝑃C)𝐴) + 𝐶)
&𝑌C)

& + 𝑌C)𝐶) + J𝛼C) +
𝜀E) + 𝜀7)K(𝑊) +𝐾))&𝐵�)&𝐵�)(𝑊) +𝐾)) + 𝜔C)𝜃)

'𝐼" +
𝐺C) + (𝑊) +𝐾))&𝐺D)(𝑊) +𝐾))  
𝛱C)%' = −(𝑊) +𝐾))&𝐵)&𝑃E) − (𝑊) +𝐾))&𝐺D)𝑊)  

𝛱C)%= = −(𝑊) +𝐾))&𝐵)&𝑃7) − (𝑊) +𝐾))&𝐺D)𝐾)  

𝛱C)'' = (𝐴+ + 𝐵+𝐾+ + 𝐵)𝑊))&𝑃E) + 𝑃E)(𝐴+ +
𝐵+𝐾+ + 𝐵)𝑊)) + J𝛼E) + 𝛾7) + 𝜖C)K𝑊)

&𝐵�)&𝐵�)𝑊) +
𝜔E)𝜎)

'𝐼" +𝑊)
&𝐺D)𝑊)  

𝛱C)'= = 𝑃E)(𝐴) + 𝐵)𝐾) − 𝐴+ − 𝐵+𝐾+) +𝑊)
&𝐵)&𝑃7) +

𝑊)
&𝐺D)𝐾)  

𝛱C)== = (𝐴) + 𝐵)𝐾))&𝑃7) + 𝑃7)(𝐴) + 𝐵)𝐾)) +
J𝛼7) + 𝛽E) + 𝛽C)K𝐴�)

&𝐴�) + J𝛽7) + 𝛾E) +
𝛾C)K𝐾)

&𝐵�)&𝐵�)𝐾) +𝜔7)𝜃)
'𝐼" + 𝜀C)𝐶�)

&𝐶�) +𝐾)&𝐺D)𝐾)  
𝓅C)% = [𝑃C)𝑀) 𝑃C)𝑀) 𝑃C)𝑀) 𝑃C)𝑀) 𝑌C)𝑁) 𝑃C)]  

𝓅C)' = [𝑃E)𝑀) 𝑃E)𝑀) 𝑃E)𝑀) 𝑃E)𝑀) 𝑃E)]  

𝓅C)= = [𝑃7)𝑀) 𝑃7)𝑀) 𝑃7)𝑀) 𝑃7)𝑀) 𝑃7)]  

𝓆C)% =
−𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔J𝛼C)𝐼", 𝛽C)𝐼", 𝛾C)𝐼", 𝜖C)𝐼", 𝜀C)𝐼", 𝜔C)𝐼"K  
𝓆C)' = −𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔J𝛼E)𝐼", 𝛽E)𝐼", 𝛾E)𝐼", 𝜀E)𝐼", 𝜔E)𝐼"K  

𝓆C)= = −𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔J𝛼7)𝐼", 𝛽7)𝐼", 𝛾7)𝐼", 𝜀7)𝐼", 𝜔7)𝐼"K  

Then, under control input (12) and observer (10) with 
𝐸) = 𝑃C)

$%𝑌C) , 𝑖th follower’s system and consensus error 
and observer error are asymptotically stable with 
guaranteed cost upper bound 𝐽7)

∗ = 𝜂)&(0)𝑃C)𝜂)(0) +
𝜑)&(0)𝑃E)𝜑)(0) + 𝑥)

&(0)𝑃7)𝑥)(0)  for cost function 𝐽7) =
𝑙𝑖𝑚
,→5

µ𝐼/ §𝑗C)(𝑡) + 𝑗E)(𝑡) + 𝑗D)(𝑡)¨¶. 
Proof: According to 𝑖th observer error definition 
𝜂)(𝑡) = 𝑥)(𝑡) − 𝑥�)(𝑡) we can get: 
𝐷/𝜂)(𝑡) = J𝐴) + 𝐸)𝐶) − 𝛥𝐵)(𝐾) +
𝑊))K𝜂)(𝑡) + (𝛥𝐴) + 𝛥𝐵)𝐾) + 𝐸)Δ𝐶))𝑥)(𝑡) +
𝛥𝐵)𝑊)𝜑)(𝑡) + 𝑓)J𝑥)(𝑡)K − 𝑓)J𝑥�)(𝑡)K  

(85) 

Consider the following Lyapunov candidate function: 
𝑉C)(𝑡) = 𝜂)&(𝑡)𝑃C)𝜂)(𝑡) + 𝜑)

&(𝑡)𝑃E)𝜑)(𝑡)
+ 𝑥)&(𝑡)𝑃7)𝑥)(𝑡) 

(86) 

where 𝑃C), 𝑃E) and 𝑃7)are unknown symmetric positive-
definite matrices. 
Taking the 𝛼-order derivative and using Lemma 3 yields: 
𝐷/𝑉C)(𝑡) ≤ §J𝐴) + 𝐸)𝐶) − 𝛥𝐵)(𝐾) +
𝑊))K𝜂)(𝑡) + (𝛥𝐴) + 𝛥𝐵)𝐾) + 𝐸)Δ𝐶))𝑥)(𝑡) +
𝛥𝐵)𝑊)𝜑)(𝑡) + 𝑓)J𝑥)(𝑡)K −

𝑓)J𝑥�)(𝑡)K¨
&
𝑃C)𝜂)(𝑡) + 𝜂)

&(𝑡)𝑃C) §J𝐴) + 𝐸)𝐶) −
𝛥𝐵)(𝐾) +𝑊))K𝜂)(𝑡) + (𝛥𝐴) + 𝛥𝐵)𝐾) +
𝐸)Δ𝐶))𝑥)(𝑡) + 𝛥𝐵)𝑊)𝜑)(𝑡) + 𝑓)J𝑥)(𝑡)K −
𝑓)J𝑥�)(𝑡)K¨ + §(𝐴+ + 𝐵+𝐾+ + (𝐵) +
Δ𝐵))𝑊))𝜑)(𝑡) + (𝐴) + 𝐵)𝐾) + Δ𝐴) + Δ𝐵)𝐾) −
𝐴+ − 𝐵+𝐾+)𝑥)(𝑡) − (𝐵) + Δ𝐵))(𝐾) +
𝑊))𝜂)(𝑡) + 𝑓)J𝑥)(𝑡)K − 𝑓+J𝑥¡)(𝑡)K −

𝐹)𝑣)(𝑡)	¨
&
𝑃E)𝜑)(𝑡) + 𝜑)

&(𝑡)𝑃E) §(𝐴+ +

(87) 

𝐵+𝐾+ + (𝐵) + Δ𝐵))𝑊))𝜑)(𝑡) + (𝐴) + 𝐵)𝐾) +
Δ𝐴) + Δ𝐵)𝐾) − 𝐴+ − 𝐵+𝐾+)𝑥)(𝑡) − (𝐵) +
Δ𝐵))(𝐾) +𝑊))𝜂)(𝑡) + 𝑓)J𝑥)(𝑡)K − 𝑓+J𝑥¡)(𝑡)K −
𝐹)𝑣)(𝑡)	¨ + §(𝐴) + Δ𝐴) + (𝐵) +
Δ𝐵))𝐾))𝑥)(𝑡) − (𝐵) + Δ𝐵))𝐾)𝜂)(𝑡) + (𝐵) +
Δ𝐵))𝑊)J𝜑)(𝑡) − 𝜂)(𝑡)K +

𝑓)J𝑥)(𝑡)K¨
&
𝑃7)𝑥)(𝑡) + 𝑥)

&(𝑡)𝑃7) §(𝐴) + Δ𝐴) +
(𝐵) + Δ𝐵))𝐾))𝑥)(𝑡) − (𝐵) + Δ𝐵))𝐾)𝜂)(𝑡) +
(𝐵) + Δ𝐵))𝑊)J𝜑)(𝑡) − 𝜂)(𝑡)K + 𝑓)J𝑥)(𝑡)K¨  

By using Lemma 4 yields: 

𝐷/𝑉C)(𝑡) ≤ ô
𝜂)(𝑡)
𝜑)(𝑡)
𝑥)(𝑡)

õ

&

𝛴C) ô
𝜂)(𝑡)
𝜑)(𝑡)
𝑥)(𝑡)

õ 
(88) 

where 

𝛴C) = à

𝛴C)%% 𝛴C)%' 𝛴C)%=
∗ 𝛴C)'' 𝛴C)'=
∗ ∗ 𝛴C)==

á  

𝛴C)%% = (𝐴) + 𝐸)𝐶))&𝑃C) + 𝑃C)(𝐴) + 𝐸)𝐶)) + J𝛼C) +
𝜀E) + 𝜀7)K(𝑊) +𝐾))&𝐵�)&𝐵�)(𝑊) +𝐾)) + J𝛼C)

$% + 𝛽C)
$% +

𝛾C)
$% + 𝜖C)

$%K𝑃C)𝑀)𝑀)
&𝑃C) + 𝜀C)

$%𝑃C)𝐸)𝑁)𝑁)
&𝐸)&𝑃C) +

𝜔C)𝜃)
'𝐼" +𝜔C)

$%𝑃C)𝑃C)  
𝛴C)%' = −(𝑊) +𝐾))&𝐵)&𝑃E)  

𝛴C)%= = −(𝑊) +𝐾))&𝐵)&𝑃7)  

𝛴C)'' = (𝐴+ + 𝐵+𝐾+ + 𝐵)𝑊))&𝑃E) + 𝑃E)(𝐴+ + 𝐵+𝐾+ +
𝐵)𝑊)) + J𝛼E) + 𝛾7) + 𝜖C)K𝑊)

&𝐵�)&𝐵�)𝑊) + J𝛼E)
$% +

𝛽E)
$% + 𝛾E)

$% + 𝜀E)
$%K𝑃E)𝑀)𝑀)

&𝑃E) +𝜔E)
$%𝑃E)𝑃E) +

𝜔E)𝜎)
'𝐼"  

𝛴C)'= = 𝑃E)(𝐴) + 𝐵)𝐾) − 𝐴+ − 𝐵+𝐾+) +𝑊)
&𝐵)&𝑃7)  

𝛴C)== = (𝐴) + 𝐵)𝐾))&𝑃7) + 𝑃7)(𝐴) + 𝐵)𝐾)) +
J𝛼7) + 𝛽E) + 𝛽C)K𝐴�)

&𝐴�) + J𝛽7) + 𝛾E) +
𝛾C)K𝐾)

&𝐵�)&𝐵�)𝐾) + J𝛼7)
$% + 𝛽7)

$% + 𝛾7)
$% +

𝜀7)
$%K𝑃7)𝑀)𝑀)

&𝑃7) +𝜔7)𝜃)
'𝐼" +𝜔7)

$%𝑃7)𝑃7) + 𝜀C)𝐶�)
&𝐶�)  

According to the fractional Lyapunov direct method, 𝑖th 
follower’s observer error is asymptotically stable If 𝛴C) <
0. 
Furthermore, we consider the following cost function: 
𝐽7) = 𝑙𝑖𝑚

,→5
µ𝐼/ §𝑗C)(𝑡) + 𝑗E)(𝑡) + 𝑗D)(𝑡)¨¶  (89) 

𝑗C)(𝑡) = 𝜂)&(𝑡)𝐺C)𝜂)(𝑡) (90) 

𝑗E)(𝑡) = 𝜑)&(𝑡)𝐺E)𝜑)(𝑡)  (91) 

𝑗D)(𝑡) = 𝑢)&(𝑡)𝐺D)𝑢)(𝑡) = §𝐾)J𝑥)(𝑡) −

𝜂)(𝑡)K +𝑊)J𝜑)(𝑡) − 𝜂)(𝑡)K¨
&
𝐺D) §𝐾)J𝑥)(𝑡) −

𝜂)(𝑡)K +𝑊)J𝜑)(𝑡) − 𝜂)(𝑡)K¨  

(92) 

If 𝐷/𝑉C)(𝑡) + 𝑗C)(𝑡) + 𝑗E)(𝑡) + 𝑗D)(𝑡) < 0: 
𝑗C)(𝑡) + 𝑗E)(𝑡) + 𝑗D)(𝑡) < −𝐷/𝑉C)(𝑡)  (93) 

Then for 𝑡 ∈ [0,∞), the 𝛼-order integrating both sides 
yields:  
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𝐼/ §𝑗C)(𝑡) + 𝑗E)(𝑡) + 𝑗D)(𝑡)¨ < 𝑉C)(0) − 𝑉C)(𝑡)  (94) 

Since 𝐷/𝑉C)(𝑡) < 0, lim
,→5

𝑉C)(𝑡) = 0, therefore: 

𝐽7) = 𝑙𝑖𝑚
,→5

µ𝐼/ §𝑗C)(𝑡) + 𝑗E)(𝑡) + 𝑗D)(𝑡)¨¶ <
𝑉C)(0) = 𝜂)&(0)𝑃C)𝜂)(0) + 𝜑)

&(0)𝑃E)𝜑)(0) +
𝑥)&(0)𝑃7)𝑥)(0) = 𝐽7)

∗   

(95) 

So, the upper bound 𝐽7)
∗  of the quadratic guaranteed cost 

function can be obtained. 
𝐷/𝑉C)(𝑡) + 𝑗C)(𝑡) + 𝑗E)(𝑡) + 𝑗D)(𝑡) ≤

ô
𝜂)(𝑡)
𝜑)(𝑡)
𝑥)(𝑡)

õ

&

𝛴ÎC) ô
𝜂)(𝑡)
𝜑)(𝑡)
𝑥)(𝑡)

õ  

(96) 

where 

𝛴ÎC) =

⎣
⎢
⎢
⎡𝛴
ÎC)%% 𝛴ÎC)%' 𝛴ÎC)%=
∗ 𝛴ÎC)'' 𝛴ÎC)'=
∗ ∗ 𝛴ÎC)==⎦

⎥
⎥
⎤
  

𝛴ÎC)%% = (𝐴) + 𝐸)𝐶))&𝑃C) + 𝑃C)(𝐴) + 𝐸)𝐶)) + J𝛼C) +
𝜀E) + 𝜀7)K(𝑊) +𝐾))&𝐵�)&𝐵�)(𝑊) +𝐾)) + J𝛼C)

$% + 𝛽C)
$% +

𝛾C)
$% + 𝜖C)

$%K𝑃C)𝑀)𝑀)
&𝑃C) + 𝜀C)

$%𝑃C)𝐸)𝑁)𝑁)
&𝐸)&𝑃C) +

𝜔C)𝜃)
'𝐼" +𝜔C)

$%𝑃C)𝑃C) + 𝐺C) + (𝑊) +𝐾))&𝐺D)(𝑊) +
𝐾))  
𝛴ÎC)%' = −(𝑊) +𝐾))&𝐵)&𝑃E) − (𝑊) +𝐾))&𝐺D)𝑊)   

𝛴ÎC)%= = −(𝑊) +𝐾))&𝐵)&𝑃7) − (𝑊) +𝐾))&𝐺D)𝐾)    

𝛴ÎC)'' = (𝐴+ + 𝐵+𝐾+ + 𝐵)𝑊))&𝑃E) + 𝑃E)(𝐴+ + 𝐵+𝐾+ +
𝐵)𝑊)) + J𝛼E) + 𝛾7) + 𝜖C)K𝑊)

&𝐵�)&𝐵�)𝑊) + J𝛼E)
$% +

𝛽E)
$% + 𝛾E)

$% + 𝜀E)
$%K𝑃E)𝑀)𝑀)

&𝑃E) +𝜔E)
$%𝑃E)𝑃E) +

𝜔E)𝜎)
'𝐼" + 𝐺E) +𝑊)

&𝐺D)𝑊)  
𝛴ÎC)'= = 𝑃E)(𝐴) + 𝐵)𝐾) − 𝐴+ − 𝐵+𝐾+) +𝑊)

&𝐵)&𝑃7) +
𝑊)

&𝐺D)𝐾)     
𝛴ÎC)== = (𝐴) + 𝐵)𝐾))&𝑃7) + 𝑃7)(𝐴) + 𝐵)𝐾)) +
J𝛼7) + 𝛽E) + 𝛽C)K𝐴�)

&𝐴�) + J𝛽7) + 𝛾E) +
𝛾C)K𝐾)

&𝐵�)&𝐵�)𝐾) + J𝛼7)
$% + 𝛽7)

$% + 𝛾7)
$% +

𝜀7)
$%K𝑃7)𝑀)𝑀)

&𝑃7) +𝜔7)𝜃)
'𝐼" +𝜔7)

$%𝑃7)𝑃7) + 𝜀C)𝐶�)
&𝐶�) +

𝐾)&𝐺D)𝐾)  

By employing Lemma 6 and let 𝒀𝜼𝒊 = 𝑷𝜼𝒊𝑬𝒊, we can 
obtain (84) and this completes the proof. 

4. Simulation results 
In this section, an example is presented to verify the 
applicability and effectiveness of the scheme proposed. 

Consider a MAS with one leader and 6 followers, the 
directed interaction topology graph is depicted in Figure 
2. The directed interaction topology graph contains a 
directed spanning tree with the leader rooted which can be 
seen obviously from Figure 2. 
Hence, the matrix ℋ is given as: 

ℋ =

⎣
⎢
⎢
⎢
⎢
⎡
2 0 0 −1 0 0
0 2 −1 0 0 0
−1 0 2 0 0 −1
0 −1 0 2 −1 0
0 0 −1 0 1 0
0 0 0 −1 0 1 ⎦

⎥
⎥
⎥
⎥
⎤

 

Consider 𝛼 = 0.9 , 𝑛 = 2 , 𝑚) = 𝑜) = 1; ∀𝑖 ∈ 𝑁< ∪ {0} 
and the parameters of MAS are as follows: 

𝐴) = ½ 0 1
−𝑎'(𝑖) −𝑎%(𝑖)

¿ , 𝐵) = ½ 0𝑏(𝑖)¿ , 𝐶) =

[0 𝑐(𝑖)], 𝑓)J𝑥)(𝑡)K = ô
0.1 sin §𝑥)%(𝑡)¨

0.1 sin §𝑥)'(𝑡)¨
õ  

𝑀) = 0.01𝐼', 𝑁) = 0.01, 𝐻)(𝑡) = cos(𝑡) 𝐼', 𝐴�) = 𝐴) ,
𝐵�) = 𝐵) , 𝐶�) = 𝐶) , 𝜃) = 𝜎) = 0.1  

where 𝑎% = {5,0,0,1,1,2,2} , 𝑎' = {5,6,5,5,6,6,5} , 𝑏 =
{1,1,2,3,3,2,1} , 𝑐 = {1,2,2,1,3,1,1}  for 𝑖 ∈
{0,1,2,3,4,5,6} . 𝑥+(0) = µ 10−10¶ , 𝑥%(0) = µ 6

−14¶ , 

𝑥'(0) = µ14−6¶, 𝑥=(0) = µ 13−13¶ , 𝑥T(0) = µ 7−7¶ , 𝑥U(0) =

µ 9
−14¶  and 𝑥V(0) = µ11−8¶ . 𝐺D) = 0.05 , 𝐺C) = 0.1𝐼' , 
𝐺E) = 𝐼', 𝐺H) = 0.1𝐼', 𝐺G) = 0.1𝐼', 𝑄 = 0.1𝐼' 𝜌 = 0.25. 
From the aforementioned theorems, by using the LMI 
toolbox in MATLAB, gain matrices can be obtained as 
the following. 

𝐸) = ½𝑒%
(𝑖)

𝑒'(𝑖)
¿ , 𝐾) = [𝑘%(𝑖) 𝑘'(𝑖)], 𝑊) =

[𝑤%(𝑖) 𝑤'(𝑖)], 𝐹) = ½
𝑓%(𝑖) 𝑓'(𝑖)
𝑓=(𝑖) 𝑓T(𝑖)

¿ , 𝑇) =

½𝑡%
(𝑖) 𝑡'(𝑖)

𝑡'(𝑖) 𝑡=(𝑖)
¿  

where 
 𝑒% = {−53.3,36.2,22.3,43.9,28.2,32.7,51.7} , 𝑒' =
{59.5, −19.4, −12.8, −27.7, −24.6, −27.4, −58.6} , 
𝑘% =
{−1.21,−1.32,−0.87,−0.23,−0.23,−0.18,−0.12} , 
𝑘' = {4.3, −1.47,−0.92,−0.22,−0.22,−0.07,0.05}  for 
𝑖 ∈ {0,1,2,3,4,5,6}  and 𝑤% =
{−16.93,−12.83,−7.7, −10.99,−14.74,−9.5} , 𝑤' =
{−13.73,−11.24,−6.66,−7.71,−9.8, −8.79} , 𝑓% =

 
Figure 2: The directed interaction topology graph of the MAS.  
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{−0.38,−0.38,−0.49,−0.49,−0.51,−0.51} , 𝑓' =
{−0.03,−0.03,−0.04,−0.04,−0.04,−0.04} , 𝑓= =
{−0.05,−0.05,−0.07,−0.07,−0.07,−0.07} , 𝑓T =
{−0.07,−0.07,−0.08,−0.08,−0.08,−0.08} , 𝑡% =
{10.88,10.88,13.73,13.73,10.74,10.74} , 𝑡' =
{0.98,0.98,1.24,1.24,0.93,0.93} , 𝑡= =
{0.48,0.48,0.61,0.61,0.38,0.38} for 𝑖 ∈ {1,2,3,4,5,6}. 

The pseudo-state trajectory 𝑥)(𝑡) , the consensus error 
trajectory 𝛿)(𝑡) , the observer error trajectory 𝜂)(𝑡)  and 
the control inputs trajectory 𝑢)(𝑡) of the MAS are shown 
in Figure 3, Figure 4, Figure 5 and Figure 6, respectively. 
The event-triggered consensus control protocol 𝑣)(𝑡) and 
the internal execution interval of followers is shown in 
Figure 7 and Figure 8. 
 

 

Figure 3: The pseudo-state trajectory 𝑥)(𝑡) of the MAS. 
 

Figure 4: The consensus error trajectory 𝛿)(𝑡) of the MAS. 
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Figure 5: The observer error trajectory 𝜂)(𝑡) of the MAS. 

 
 Figure 6: The control inputs trajectory 𝑢)(𝑡) of the MAS. 
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Figure 7: the event-triggered consensus control protocol 𝑣)(𝑡) of the MAS. 

Figure 8: Internal execution interval of followers. 
 

 
According to the figures, it can be seen that observers 
estimate pseudo-states of agents correctly and the leader-
following consensus has been achieved properly while the 
communication between the followers is based on event-
triggered strategy. Updates to the control protocol occur 
only upon the satisfaction of the triggering condition but 
the control inputs of agents change continuously. 
 
 5. Conclusion 
In this paper, the event-triggered leader-following GCC 
for heterogeneous uncertain nonlinear FOMASs based on 
observers has been studied. It considered that each agent 
has different fractional-order dynamics with state, input, 
and output uncertainty. For saving communication 
resources, an event-triggered strategy proposed that 

control protocol doesn’t update until triggering condition 
maintain. Based on the fractional Lyapunov direct method 
and the proposed event-triggered strategy, problem 
described by LMIs and some criteria were obtained to 
ensure that GCC was achieve. To show the effectiveness 
of the proposed method a numerical simulation is given 
and the results are reported. Future works will focus on 
the fixed-time consensus leader-following consensus for 
heterogeneous uncertain nonlinear FOMASs based on 
observers.  
 
Declaration of Competing Interest 
Authors declare that they have no conflict of interest. 
 
Funding 



                                                     
274                      Citation information: DOI 10.48308/ijrtei.2024.234610.1039, International Journal of Research and Technology in Electrical 

Industry 
 

IJRTEI., 2024, Vol.3, No. 1, pp. 260-274 
 

The authors received no financial support for the research, 
authorship and publication of this article.  
 
References 
[1] M. A. Rosaldo-Serrano, J. Santiaguillo-Salinas, and E. 

Aranda-Bricaire, "Observer-based time-varying 
backstepping control for a quadrotor multi-agent system," 
Journal of Intelligent & Robotic Systems, vol. 93, no. 1, pp. 
135-150, 2019. 

[2] J. Qin, W. Fu, H. Gao, and W. X. Zheng, "Distributed $ k $-
means algorithm and fuzzy $ c $-means algorithm for sensor 
networks based on multiagent consensus theory," IEEE 
transactions on cybernetics, vol. 47, no. 3, pp. 772-783, 
2016. 

[3] J. Khazaei and D. H. Nguyen, "Multi-agent consensus design 
for heterogeneous energy storage devices with droop control 
in smart grids," IEEE Transactions on Smart Grid, vol. 10, 
no. 2, pp. 1395-1404, 2017. 

[4] H. Hamidi and A. Kamankesh, "An approach to intelligent 
traffic management system using a multi-agent system," 
International Journal of Intelligent Transportation Systems 
Research, vol. 16, no. 2, pp. 112-124, 2018. 

[5] C. Ma, T. Li, and J. Zhang, "Consensus control for leader-
following multi-agent systems with measurement noises," 
Journal of Systems Science and Complexity, vol. 23, no. 1, 
pp. 35-49, 2010. 

[6] F. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das, 
Cooperative control of multi-agent systems: optimal and 
adaptive design approaches. Springer Science & Business 
Media, 2013. 

[7] C. P. Chen, G.-X. Wen, Y.-J. Liu, and F.-Y. Wang, 
"Adaptive consensus control for a class of nonlinear 
multiagent time-delay systems using neural networks," IEEE 
Transactions on Neural Networks and Learning Systems, 
vol. 25, no. 6, pp. 1217-1226, 2014. 

[8] W. He, G. Chen, Q.-L. Han, and F. Qian, "Network-based 
leader-following consensus of nonlinear multi-agent systems 
via distributed impulsive control," Information Sciences, vol. 
380, pp. 145-158, 2017. 

[9] X. Xie, D. Yue, and C. Peng, "Relaxed real-time scheduling 
stabilization of discrete-time Takagi–Sugeno fuzzy systems 
via an alterable-weights-based ranking switching 
mechanism," IEEE Transactions on Fuzzy Systems, vol. 26, 
no. 6, pp. 3808-3819, 2018. 

[10] D. Zhang, Z. Xu, H. R. Karimi, Q.-G. Wang, and L. Yu, 
"Distributed $ H_\infty $ Output-Feedback Control for 
Consensus of Heterogeneous Linear Multiagent Systems 
With Aperiodic Sampled-Data Communications," IEEE 
Transactions on Industrial Electronics, vol. 65, no. 5, pp. 
4145-4155, 2017. 

[11] Z. Li, Z. Duan, L. Xie, and X. Liu, "Distributed robust control 
of linear multi-agent systems with parameter uncertainties," 
International Journal of Control, vol. 85, no. 8, pp. 1039-
1050, 2012. 

[12] J. Wang, Z. Duan, G. Wen, and G. Chen, "Distributed robust 
control of uncertain linear multi-agent systems," 
International Journal of Robust and Nonlinear Control, vol. 
25, no. 13, pp. 2162-2179, 2015. 

[13] Y. Cao and W. Ren, "Distributed formation control for 
fractional-order systems: dynamic interaction and 
absolute/relative damping," Systems & Control Letters, vol. 
59, no. 3-4, pp. 233-240, 2010. 

[14] Y. Cao, Y. Li, W. Ren, and Y. Chen, "Distributed 
coordination of networked fractional-order systems," IEEE 
Transactions on Systems, Man, and Cybernetics, Part B 
(Cybernetics), vol. 40, no. 2, pp. 362-370, 2009. 

[15] X. Yin, D. Yue, and S. Hu, "Consensus of fractional-order 
heterogeneous multi-agent systems," IET Control Theory & 
Applications, vol. 7, no. 2, pp. 314-322, 2013. 

[16] P. Gong, "Distributed tracking of heterogeneous nonlinear 
fractional-order multi-agent systems with an unknown 
leader," Journal of the Franklin Institute, vol. 354, no. 5, pp. 
2226-2244, 2017. 

[17] P. Gong and W. Lan, "Adaptive robust tracking control for 
uncertain nonlinear fractional-order multi-agent systems 
with directed topologies," Automatica, vol. 92, pp. 92-99, 
2018. 

[18] P. Gong and W. Lan, "Adaptive robust tracking control for 
multiple unknown fractional-order nonlinear systems," IEEE 
transactions on cybernetics, vol. 49, no. 4, pp. 1365-1376, 
2018. 

[19] P. Gong, K. Wang, and W. Lan, "Fully distributed robust 
consensus control of multi-agent systems with heterogeneous 
unknown fractional-order dynamics," International Journal 
of Systems Science, vol. 50, no. 10, pp. 1902-1919, 2019. 

[20] P. Gong and K. Wang, "Output feedback consensus control 
for fractional-order nonlinear multi-agent systems with 
directed topologies," Journal of the Franklin Institute, vol. 
357, no. 3, pp. 1473-1493, 2020. 

[21] P. Gong, W. Lan, and Q.-L. Han, "Robust adaptive fault-
tolerant consensus control for uncertain nonlinear fractional-
order multi-agent systems with directed topologies," 
Automatica, vol. 117, p. 109011, 2020. 

[22] G. Wen, Y. Zhang, Z. Peng, Y. Yu, and A. Rahmani, 
"Observer-based output consensus of leader-following 
fractional-order heterogeneous nonlinear multi-agent 
systems," International Journal of Control, vol. 93, no. 10, 
pp. 2516-2524, 2020. 

[23] J. Dai and G. Guo, "Event-triggered leader-following 
consensus for multi-agent systems with semi-Markov 
switching topologies," Information Sciences, vol. 459, pp. 
290-301, 2018. 

[24] X. Li, D. Ma, X. Hu, and Q. Sun, "Dynamic event-triggered 
control for heterogeneous leader-following consensus of 
multi-agent systems based on input-to-state stability," 
International Journal of Control, Automation and Systems, 
vol. 18, no. 2, pp. 293-302, 2020. 

[25] R. Yang, L. Liu, and G. Feng, "Leader-following output 
consensus of heterogeneous uncertain linear multiagent 
systems with dynamic event-triggered strategy," IEEE 
Transactions on Systems, Man, and Cybernetics: Systems, 
vol. 52, no. 3, pp. 1626-1637, 2020. 

[26] G. Ren, Y. Yu, C. Xu, and X. Hai, "Consensus of fractional 
multi-agent systems by distributed event-triggered strategy," 
Nonlinear Dynamics, vol. 95, pp. 541-555, 2019. 

[27] T. Hu, Z. He, X. Zhang, and S. Zhong, "Leader-following 
consensus of fractional-order multi-agent systems based on 
event-triggered control," Nonlinear Dynamics, vol. 99, no. 3, 
pp. 2219-2232, 2020. 

[28] Z. Wang, J. Xi, Z. Yao, and G. Liu, "Guaranteed cost 
consensus for multi-agent systems with fixed topologies," 
Asian Journal of Control, vol. 17, no. 2, pp. 729-735, 2015. 

[29] Z. Wang, Z. Fan, and G. Liu, "Guaranteed performance 
consensus problems for nonlinear multi-agent systems with 
directed topologies," International Journal of Control, vol. 
92, no. 12, pp. 2952-2962, 2019. 

[30] Y. Luo, X. Xiao, J. Cao, and A. Li, "Event-triggered 
guaranteed cost consensus for uncertain nonlinear multi-
agent systems with time delay," Neurocomputing, vol. 394, 
pp. 13-26, 2020. 

[31] Y. Luo, X. Xiao, J. Cao, A. Li, and G. Lin, "Event-triggered 
guaranteed cost consensus control for second-order multi-
agent systems based on observers," Information Sciences, 
vol. 546, pp. 283-297, 2021. 

[32] Y. Tian, Q. Xia, Y. Chai, L. Chen, A. M. Lopes, and Y. Chen, 
"Guaranteed cost leaderless consensus protocol design for 
fractional-order uncertain multi-agent systems with state and 
input delays," Fractal and Fractional, vol. 5, no. 4, p. 141, 
2021. 

[33] I. Podlubny, "Fractional differential equations, mathematics 
in science and engineering," ed: Academic press New York, 
1999. 

[34] Y. Li, Y. Chen, and I. Podlubny, "Mittag–Leffler stability of 
fractional order nonlinear dynamic systems," Automatica, 
vol. 45, no. 8, pp. 1965-1969, 2009. 

[35] G. H. Hardy, J. E. Littlewood, G. Pólya, and G. Pólya, 
Inequalities. Cambridge university press, 1952. 

[36] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear 
matrix inequalities in system and control theory. SIAM, 
1994. 

 


