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In the smart grid era, Short-Term Load Forecasting (STLF) is the building block 

of a secure, reliable, and economical power system. Therefore, researchers have 

spent much time trying different methods to improve load forecasting accuracy. 

Despite the advances in the STLF area, load forecasting is still difficult. This 

difficulty comes from two facts: 1- The behavior of the electric load is complex 

and shows different levels of seasonality; 2- The electric load is strongly 

influenced by other external factors such as meteorological variables and calendar 

variables. To overcome these issues, in this paper, a two-stage Kalman filter-based 

method is used to enhance the accuracy of STLF. In the first stage of the proposed 

method, the Kalman filter and Rauch-Tung-Striebel smoother are applied to the 

short windows of the past electric load series to obtain an initial prediction of the 

load series. To produce the final forecast, in the second stage, the initial prediction 

of the load series along with other calendar and meteorological variables are used 

to form a load forecasting model whose parameters are obtained based on another 

Kalman filter. The effectiveness of the proposed method is evaluated by 

performing a case study on the real dataset from a power utility in Iran, which 

shows the excellent performance of the proposed method with 1.98% mean 

absolute error. 
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1. Introduction 

Nowadays, Short-Term Load Forecasting (STLF), 

which provides electric load forecasts up to two weeks 

ahead, is a vital part of a secure, reliable, and economic 

power system. Accurate production coordination of 

electric generators in current power systems closely 

depends on the STLF accuracy. Also, STLF is crucial for 

designing and implementing proper demand-side 

response programs which avoid the cost of building new 

power generation and power transmission facilities by 

reducing power consumption during peak hours. 

Furthermore, with the deregulation of the power industry, 

the significance of the STLF task has become more 

pronounced for the electric utilities and retailers, which is 
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due to the key role of STLF in purchasing the correct 

amount of required energy in power markets. 

Due to the valuable benefits of the load forecasting 

and the fact that one percent growth in forecasting error 

approximately results in a 10 million Euro increase in 

operating costs per year (in 1984) [1], a large amount of 

research has been devoted to the load forecasting area, and 

therefore many techniques have been tried. These 

techniques can be classified into two major groups: 1- 

statistical and classical techniques: e.g., Multiple Linear 

Regression (MLR) [2], Auto Regressive Moving Average 

(ARMA) [3], exponential smoothing [4], Kalman filter 

[5], Markov-chain mixture distribution model [6], and 2- 

artificial intelligence techniques: e.g., Artificial Neural 
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Network (ANN), Support Vector Machines (SVM) [7], 

gradient boosting machines [8] and fuzzy systems [9]. 

From the statistical techniques, MLR [10] and ARMA 

[11] models have received the most attention [12]. In 

MLR, the electric load is explained by combining some 

exogenous variables such as temperature and calendar 

variables, which is a great feature where there is a tangible 

relationship between temperature and electricity 

consumption. However, in the MLR models, some 

restrictive assumptions should be held that violating them 

leads to reduced forecasting accuracy. ARMA models are 

based on the electric load only. These models do not 

include other factors like temperature in the model, so this 

technique is suitable for regions where the load is not 

affected by other factors like weather conditions. 

From artificial intelligence techniques, ANN [13] has 

received the most attention in the load forecasting area 

[14], which is partially due to the fact that ANN doesn’t 

require much prior knowledge of the relationship between 

load and affecting variables; because ANN is a black box 

technique that can infer underlying relationships between 

input and output variables. In recent years, a class of 

ANNs called Recurrent Neural Network (RNN), and its 

variants like Long Short-Term Memory (LSTM) and 

Gated Recurrent Unit (GRU) have been widely used for 

load forecasting. In reference [15], multiple time series 

are utilized to build a load forecasting system based on the 

RNN structure that can discover sequential information 

between continuous and discrete series; this method was 

tested on the polish power system dataset. Simple RNNs 

are prone to gradient vanishing or exploding, which refers 

to exponentially decrease (toward zero) or increase 

(toward infinity) in the norm of the error gradient, 

respectively [16]. Therefore, researchers are more 

interested in LSTM and GRU variants. In reference [17], 

the authors proposed an LSTM-based framework to 

forecast residential load. In reference [18], a load 

decomposition technique called Empirical Mode 

Decomposition (EMD) is used with the GRU network to 

increase STLF accuracy; it’s shown that using highly 

correlated components with the primary load series 

instead of using all the decomposed components as the 

input features of the GRU network leads to enhanced 

performance. In reference [19], the authors have used a 

two-dimensional Convolutional Neural Network (CNN) 

to extract new features of the load series. They have fed 

these features to the bidirectional GRU and LSTM 

networks to perform hourly load forecasting. Also, a 

similar approach based on one-dimensional CNN and 

LSTM is proposed in reference [20], and it’s used to 

forecast the electrical load of the Bangladesh power 

system. In reference [21], Deep Neural Network (DNN) 

is compared with shallow networks; in the end, the 

authors concluded that DNNs exhibit more accurate 

predictions and are more suitable for STLF. Successful 

implementation of DNN for STLF can be found in 

reference [22], where authors have proposed a variant of 

deep residual networks (ResNet) to enhance load 

forecasting. 

Although ANNs have been extensively used in the 

field of load forecasting, they are prone to overfitting 

problems due to the high number of parameters [23], [24]; 

this problem exacerbates for deep networks or complex 

structures like LSTM where the number of parameters can 

reach thousands. In case of insufficient sample data in the 

training dataset, parameter estimation cannot be 

performed properly; therefore, one cannot expect good 

forecasting accuracy in practice. For example, in case of 

having significant events like changes in the size of the 

service territory, war, recession, or boom in the history of 

the service territory, only the load data after these changes 

can be used as the training data, which may not be enough 

for proper parameter estimation. 

A review of STLF literature reveals that artificial 

intelligence techniques have dominated classical 

techniques for more than two decades. However, a recent 

paper [25] showed that the Kalman filter still has great 

capabilities in dealing with STLF problems. In reference 

[25], it’s been demonstrated that the Kalman filter can 

outperform the prominent ResNet and LSTM networks 

and yield more accurate STLF results. 

In this paper, a two-stage Kalman filter-based method 

is used to enhance the accuracy of STLF further. In the 

first stage of the proposed method, the Kalman filter and 

Rauch-Tung-Striebel smoother are applied to the short 

windows of the electric load series to capture the local 

behavior of the load series and obtain an initial prediction 

of it. Then in the second stage, the initial prediction of the 

load series along with other calendar and meteorological 

variables are used to form a load forecasting model whose 

parameters are obtained based on another Kalman filter. 

The rest of the paper is organized as follows: Section 

II is devoted to a short introduction to the Kalman filter 

and Rauch-Tung-Striebel (RTS) smoother. Our proposed 

Kalman filter-based method for STLF is illustrated in 

Section III. Experimental results and comparisons with 

other methods are reported in section IV. Finally, Section 

V concludes the paper. 

 

2. Theoretical Background 

 

2.1. Kalman Filter 

Introduced by Rudolf E. Kalman in 1960 [26], the 

Kalman filter addresses the problem of estimating the 

states of a linear discrete-time system which is defined as 

follows: 

 

𝑥𝑘  = 𝐹 𝑥𝑘−1 + 𝑤𝑘−1,
𝑦𝑘  = 𝐻 𝑥𝑘 + 𝑣𝑘 ,

 (1) 

 

Where xk ∈ Rn  is the state, yk ∈ Rm  is the 

measurement, 𝐹  is the transition matrix, 𝐻  is the 

measurement matrix, 𝑤𝑘−1~𝑁(0, Qk−1)  is the process 

noise, and 𝑣𝑘~𝑁(0, Rk) is the measurement noise. 

Kalman filter consists of two steps which are called 

prediction and update steps. The prediction step is needed 

for projecting forward the current state and error 

covariance estimates to obtain the a priori estimates for 

the next time step. The update step is required to include 

a new measurement into the a priori estimate to achieve 

an enhanced a posteriori estimate [27]. 

Kalman filter prediction step is: 

 

𝑥̂𝑘
− = 𝐹 𝑥̂𝑘−1

+  (2) 
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𝑃𝑘
− = 𝐹 𝑃𝑘−1

+ 𝐹 
𝑇 + 𝑄𝑘−1 

 

Where 𝑥̂𝑘
−  and 𝑃𝑘

−  are a priori estimate and a priori 

covariance, respectively. 

 

Kalman filter update step is: 

 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1 

𝑥̂𝑘
+ = 𝑥̂𝑘

− + 𝐾𝑘(𝑦𝑘 − 𝐻𝑥̂𝑘
−) 

𝑃𝑘
+ = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘

− 

(3) 

 

Where 𝑥̂𝑘
+  and 𝑃𝑘

+  are a posteriori estimate and a 

posteriori covariance, respectively. The matrix 𝐾𝑘  is 

called Kalman filter gain. 

 

2.2. RTS Smoother 

Kalman filter enables us to estimate the current state 

of a linear discrete-time system using the measurements 

obtained up to the current time. However, better estimates 

can be made using Kalman-based smoothers if future 

measurements are available. RTS smoother is a fixed-

interval smoothing technique introduced by Rauch, Tung, 

and Striebel in 1965 [28]. This smoother allows us to 

refine estimates of previous states, in favor of the 

subsequent observations, in a more computationally 

efficient manner [29]. 

For a system defined in the form of Equ. (1), the RTS 

smoother algorithm is defined as follows [29]: 

1- Initialize the forward filter as follows: 

 

𝑥̂0
+ = 𝐸(𝑥0) 

𝑃0
+ = E[(𝑥0 − 𝑥̂0

+)(𝑥0 − 𝑥̂0
+)𝑇] 

(4) 

 

2- For 𝑘 = 1, … , 𝑁 , execute the standard Kalman 

filter, i.e., Equs. (2)& (3). Note that 𝑁 is the final 

time. 

3- Initialize the RTS smoother as follows: 

 

𝑥̂𝑁
𝑠 = 𝑥̂𝑁

+ 

𝑃𝑁
s = 𝑃𝑘

+ 

(5) 

 

4- For 𝑘 = 𝑁 − 1, … , 1,0, execute the following RTS 

smoother equations: 

 

𝐾𝑘
𝑠 = 𝑃𝑘

+𝐹 
𝑇(𝑃𝑘+1

− )−1 

𝑃𝑘
𝑠 = 𝑃𝑘

+ − 𝐾𝑘
𝑠(𝑃𝑘+1

− − 𝑃𝑘+1
𝑠 )𝐾𝑘

𝑠𝑇
 

𝑥̂𝑘
𝑠 = 𝑥̂𝑘

+ + 𝐾𝑘
𝑠(𝑥̂𝑘+1

𝑠 − 𝑥̂𝑘+1
− ) 

(6) 

3. Proposed Method 

Roughly speaking, there are two major issues 

regarding STLF which make accurate load forecasting a 

difficult task. 1- The behavior of the electric load is 

complex in nature and shows different levels of 

seasonality, e.g., hourly, daily, and weekly; 2- The electric 

load is strongly influenced by other external factors such 

as meteorological variables and calendar variables. 

In this paper, a two-stage Kalman filter-based method 

is used to address the mentioned issues and enhance the 

accuracy of STLF. In the first stage of the proposed 

method, the Kalman filter and RTS smoother are used to 

obtain an initial prediction of the load series. To produce 

the final forecast, in the second stage, the initial prediction 

of the load series along with other calendar and 

meteorological variables are used to form a load 

forecasting model whose parameters are obtained based 

on another Kalman filter. These stages are further 

explained in the sequel of this section. 

 

3.1. Stage I 

In this stage, the idea is to build a state-space model 

that explains the local behavior of the electric load series. 

This model is assumed to be of the form defined in Equ. 

(1). In this stage, xk ∈ R24 is the hidden state, and yk ∈
R24  contains the observed hourly electric load values 

whose dimension corresponds to 24 hours of a day. 

For building a state-space model that explains the 

local behavior of the electric load series, at first, 𝐹 and 𝐻 

matrices of the linear discrete-time system should be 

estimated. Hence, Expectation-Maximization (EM) 

algorithm is used, which is a method for iteratively 

finding the Maximum Likelihood estimate of the 

parameters. 

The EM algorithm for estimating 𝐹 and 𝐻 matrices is 

defined as follows [30]: 

1- Start from an initial guess for 𝐹 and 𝐻 matrices. 

2- Expectation step: Run RTS smoother algorithm 

(Equs. (4)-(6)) using the current values of 𝐹 and 𝐻; 

then compute the following Equations: 

 

𝛴 =
1

𝑇
∑𝑘=1

𝑇  𝑃𝑘
𝑠 + 𝑥̂𝑘

𝑠[𝑥̂𝑘
𝑠]𝑇 

𝛷 =
1

𝑇
∑𝑘=1

𝑇  𝑃𝑘−1
𝑠 + 𝑥̂𝑘−1

𝑠 [𝑥̂𝑘−1
𝑠 ]𝑇 

𝐵 =
1

𝑇
∑𝑘=1

𝑇  𝑦𝑘[𝑥̂𝑘
𝑠]𝑇 

𝐶 =
1

𝑇
∑𝑘=1

𝑇  𝑃𝑘
𝑠𝐾𝑘−1

𝑠 𝑇
+ 𝑥̂𝑘

𝑠[𝑥̂𝑘−1
𝑠 ]𝑇 

(7) 

 

3- Maximization step: Find new values for 𝐹 and 𝐻 

matrices using the following Equations: 

 

𝐹 = 𝐶𝛷−𝟏 

𝐻 = 𝐵𝛴−1 

(8) 

 

4- Return to step 2 for the next iteration of the EM 

algorithm. Or stop if the desired number of EM 

iterations is performed. 

 

Note that, since we want to capture the local behavior 

of the load series, values of the load series for the last few 

weeks should be used in the EM algorithm. Our studies 

showed that two to four weeks of hourly electric load 

series would be fine for this purpose. 

So far, we have built the desired state-space model. 

The following formula can be used to achieve an initial 

prediction for the load profile of the next day: 
 

https://doi.org/10.48308/ijrtei.2024.235219.1042
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𝒚̂𝑘+1 = 𝑯𝑭 𝑥̂𝑘
+ (9) 

 

Where 𝑥̂𝑘
+  is obtained from the update step of the 

Kalman filter, i.e., Equ. (3). It should be noted that the 

initial prediction is obtained based on the electrical load 

values only. Therefore, further process is needed on the 

initial prediction to enhance its accuracy by taking into 

account external factors. This process is done in the 

second stage of the proposed method. 

 
  

Fig. 4. Actual and Forecasted load profile of a sample week. 

 

 

3.2. Stage II 

Electric load consumption is highly dependent on 

other external factors such as meteorological and calendar 

variables. Among the meteorological variables, 

Temperature has the most effect on the electric load 

consumption that is due to the use of cooling and heating 

systems. In Fig. 1, the load profiles of three consecutive 

Tuesdays in June are depicted to better illustrate the effect 

of Temperature on the load consumption. 

 

 

Fig. 1. Load profiles of three consecutive Tuesdays with 

different Temperatures (T). 

 

As depicted in Fig. 1, for our considered region, the 

electric load consumption increases as temperature 

increases. In Fig. 1, the similar load during Hours 13- 17 

for T=35 and T=38 are because of the activated Demand 

Response (DR) program, which reduces electric load 

consumption during peak hours. Among the calendar 

variables, holidays and days of the week have the most 

effect on the electric load consumption that is because of 

the different behavior of people in different situations. For 

example, schools and most offices are closed on holidays 

and weekends, which reduces electric load consumption. 

These issues are illustrated in Fig. 2 and Fig. 3. 

 

Fig. 2. Load profile of a Holiday and its seven days later. 

 

 

Fig. 3. Load profile of a Tuesday (working day) and its 

following Friday (weekend in Iran). 

 

From the above discussion and Figs. 1-3, it can be 

concluded that external variables should be included in 

the forecasting model to perform accurate load 

forecasting. Moreover, since the electric load of each hour 

of the day has exclusive characteristics, therefore, in this 

section, twenty-four of the following single output linear 

models are used to produce the final load forecast for 

twenty-four hours of a day. Note that each of these 24 

models, which correspond to each hour in a day, must be 

trained separately: 
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Y𝑖 = 𝛽0 + 𝛽1𝑀𝑜𝑛𝑡ℎ + 𝛽2𝐷𝑎𝑦 + 𝛽3𝑀𝑜𝑛𝑡ℎ

∗ 𝑇 + 𝛽4𝑀𝑜𝑛𝑡ℎ ∗ 𝑇3

+ 𝛽5𝐿𝐼𝐹 + 𝛽6𝐿𝐼𝐹𝑖 ∗ 𝐷𝑎𝑦

+ 𝛽7𝑇𝑟𝑒𝑛𝑑

+ 𝛽8𝐻𝑜𝑙𝑖𝑑𝑎𝑦

+ 𝛽9𝐻𝑜𝑙𝑖𝑑𝑎𝑦𝑑  

(10) 

 

In which 𝑀𝑜𝑛𝑡ℎ  and  𝐷𝑎𝑦  are class variables that 

correspond to the month of the year and the day of the 

week, 𝑇 is the average temperature of the forecasting day, 

𝐿𝐼𝐹  is the load profile obtained from the initial 

forecast, 𝐿𝐼𝐹𝑖  is the value of the initial forecast at the hour 

𝑖, 𝐻𝑜𝑙𝑖𝑑𝑎𝑦 and 𝐻𝑜𝑙𝑖𝑑𝑎𝑦𝑑 are class variables which show 

national holidays of the forecasting day and the day before 

forecasting day, respectively, Trend is a natural number 

which captures the increasing trend of the load by 

assigning a separate number to each day in historical data, 

and Y𝑖 is the final load forecast for hour 𝑖 = 1, … ,24. 

To achieve accurate parameter estimation for the 

parameters of the forecasting models, these models should 

be written in the form defined in Equ. (1). Hence, in this 

stage, xk is defined as the vector of unknown parameters, 

which is defined as follows: 

 

𝑥𝑘 = [𝛽0 + 𝛽1 + 𝛽2 + 𝛽3 + 𝛽4 + 𝛽5 + 𝛽6

+ 𝛽7 + 𝛽8 + 𝛽9]𝑇 

 

(11) 

yk is the predicted load (measure load in the parameter 

identification phase); 𝐹  is an identity matrix, and 𝐻  is 

defined as follows: 

 

𝐻 = 1 + 𝑀𝑜𝑛𝑡ℎ + 𝐷𝑎𝑦 + 𝑀𝑜𝑛𝑡ℎ ∗ 𝑇

+ 𝑀𝑜𝑛𝑡ℎ ∗ 𝑇3 + 𝐿𝐼𝐹

+ 𝐿𝐼𝐹𝑖 ∗ 𝐷𝑎𝑦 + 𝑇𝑟𝑒𝑛𝑑

+ 𝐻𝑜𝑙𝑖𝑑𝑎𝑦 + 𝐻𝑜𝑙𝑖𝑑𝑎𝑦𝑑  

(12) 

 

Now that the forecasting model (Equ. 10) is rewritten 

in the form of a linear discrete-time system, we can use 

the Kalman filter to achieve parameter estimation for 

unknown parameters. Our studies showed that two to four 

years of data would be fine for accurate parameter 

estimation. After parameter estimation, the final load 

forecast can be obtained using 𝑦𝑘 = 𝐻𝑥𝑘. 

 

4. Experimental Results And Discussion 

For validating the effectiveness of the proposed STLF 

method, in this section, the results of our case study on the 

real dataset from a power utility in Iran are presented and 

compared with two other STLF methods. For this purpose, 

five years of hourly electric load over the period of March 

17, 2015, to March 16, 2020, has been gathered; the first 

four years of data are used for parameter estimation, and 

the last year of data is used for testing the accuracy of the 

proposed method. 

To better illustrate the effectiveness of the proposed 

method, we have used two other STLF works as the 

competing methods. One of them is presented in Ref [25], 

which is based on the Kalman filter, and the other one is 

presented in Ref [31], which is based on LSTM neural 

network. 

For the first stage of the proposed method, 𝐹 and 𝐻 

are initially set as all-ones matrices. Also, Q and 𝑅  are 

considered identity matrices with scale values of 1 and 

10−2, respectively. And the EM algorithm is performed 

for four iterations on the last three weeks of the hourly 

electric load series to estimate 𝐹 and 𝐻 matrices. In the 

second stage of the proposed method, 𝐹  is an identity 

matrix, and 𝐻  is defined as Equ. (12), Q  and 𝑅  are 

considered as identity matrices with scale values of 10−4 

and 10−3, respectively. Also, four years of data are used 

for parameter estimation. 

In this paper, the load forecasting errors are reported 

in terms of mean absolute percentage error (MAPE) and 

root mean squared error (RMSE) which are defined as 

follows: 
 

𝑀𝐴𝑃𝐸(%) =
1

𝑁
 ∑

|𝐿𝐴(𝑛) − 𝐿𝐹(𝑛)|

𝐿𝐴(𝑛)

𝑁

𝑛=1

× 100 

(13) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
 ∑(𝐿𝐴(𝑛) − 𝐿𝐹(𝑛))

2
𝑁

𝑛=1

 

(14) 

 

Where LA(n)  and LF(n)  denote the actual and 

forecasted load at the 𝑛𝑡ℎ hour, and N is the total number 

of the forecasted hours. 

The results of our simulations with the proposed STLF 

method and two other competing methods are reported in 

Table I. For better illustrating the actual performance of 

the considered STLF methods, the results of a sample 

week in autumn of 2019 are shown in Fig. 4. 

 

TABLE I 

LOAD FORECASTING RESULTS 

METHOD MAPE(%) RMSE 

KALMAN FILTER 

[25] 

3.56 44.9 

LSTM [31] 2.26 26.5 

PROPOSED 

METHOD 

1.98 23.8 

 

From the results of Table I and Fig. 4, it can be concluded 

that the proposed STLF method outperforms a recent 

work that was based on the Kalman filter. The achieved 

performance is primarily due to considering the effect of 

holidays in the proposed approach. In Fig. 5, load 

forecasting results of a holiday (Birth of Imam Mahdi) are 

depicted, which shows the superiority of the proposed 

method. 
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Fig. 5. Actual and Forecasted load profile of a 

Holiday 

 

Furthermore, the present work not only outperforms our 

previous work, which was based on LSTM neural 

network (refer to Table I and Figs. 4-5), but also, it has 

significantly less computational time. The simulation time 

for running the present work on a laptop with an Intel 

Core-i7 processor and 8GB of RAM was 6 seconds, while 

it lasted 144 minutes for the LSTM –based method. 

 

5. Conclusion 

Nowadays, STLF is an essential component of a 

secure, reliable, and economic power system. Hence, in 

this work, a novel method based on the Kalman filter is 

presented to increase STLF accuracy further. The 

proposed method consists of two stages. In the first stage, 

a state-space model is built that explains the local 

behavior of the electric load series and produces an initial 

forecast. In the second stage, the initial forecast and other 

external variables are used to form the final load 

forecasting model that produces the final load forecast for 

the next day. In the end, through conducting a case study 

on the real dataset from a power utility in Iran, 

comparisons with two other STLF works have been made, 

which shows the effectiveness of the proposed method. 

For future work, instead of a simple Kalman Filter, one 

can use an Extended Kalman Filter or Unscented Kalman 

Filter in the proposed STLF framework. 
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