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This paper presents a Peer-to-Peer (P2P) energy trading model in micro-grids that 

considers distributed solar photovoltaic systems (SPVs) and battery energy storage 

systems (BESS) by the TLBO Algorithm. It aims to minimize customer costs and 

increase profit by optimizing charging, purchasing, and selling decisions. For this 

purpose, two scenarios are studied. In the first scenario, the primary energy system 

includes SPVs, loads, and BESS to optimize the charge/discharge of the energy 

storage systems. In the second scenario, it is assumed that in addition to the SPVs, 

loads, and BESS, a neighbouring fossil fuel-fired micro-grid is connected to the 

primary energy systems, allowing peer-to-peer (P2P) energy trading with it. 

According to the results, trading in the second scenarios on a winter day lead to 

14.53 $ per day, compared to the first scenario with 11.53 $. In addition, the 

neighbouring fossil fuel-fired micro-grid in the second scenario, which has created 

the possibility of energy exchange between micro-grids, has led to an increase of 

about 21% in the profit of the primary power grid. Based on the results, this 

approach seemed to be helpful for micro-grid operators to make the most 

economical decisions. 
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1. Introduction 

Renewable-based energy sources, like solar 

photovoltaic systems, fuel cells (FCs), and geothermal 

power plants, constitute the majority of the emerging 

power grid industry segment [1-3]. This represents a shift 

from centralized power plants to more localized, 

distributed power generation, particularly in urban, 

industrial, and community areas [4-8]. Therefore, it is 

essential to integrate two or more sources to provide 

continuous power and minimize the cost to the customer 

via an intelligent energy management system (EMS) [8-

10]. Nowadays, economic perspectives are an essential 

issue in the evolution of the energy grid. They have 

always been the main priority in planning energy 

systems. Due to energy source technology and pattern 
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evolution, energy markets are decentralized and moving 

forward to a digital market. Peer-to-peer (P2P) energy 

trading is entering the energy sector for distributed 

generation (DG) [11]. P2P application lets individual 

consumers become consumers and makes it possible to 

share their excess energy with neighbors [12-15]. On the 

other hand, instead of grid operators, the microgrid 

operators are maintaining energy balance in each vicinity 

and managing electric consumption. They supervise the 

capacity of the controllable line for the exchange of 

energy [16, 17]. In P2P energy exchange, additional 

intermediaries’ costs can be considered easily by 

distribution costs in addition to the microgrid electricity 

prices [11]. 

The results of a P2P energy trading platform 

simulation have been presented that this platform can 

https://orcid.org/0000-0002-7685-936X
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help network and congestion management and lead to 

more DG sharing within a community [18, 19]. The win-

win situation can achieved by looking for a reasonable 

exchange price and making a deal in the moment. Energy 

market players are not limited to conventional power 

plants and loads in the P2P energy trading ecosystem and 

each customer could trade electricity at a marginal price 

by the time of use (TOU) price and higher than feed-in 

tariffs (FIT). This provides motivating profit for sellers 

and savings for buyers [20]. Recent studies found that a 

30% lower energy cost for households is reachable in the 

P2P energy trading model compared to traditional energy 

exchange methods[13]. The reference [21] presents a 

multi-objective model that uses a future-day stochastic 

scheduling model to lower costs for ten renewable-based 

microgrids, which include solar photovoltaic and wind 

turbines (WT) with demand response and energy storage. 

In the Reference [22], all microgrids are equipped with 

100% renewable energy sources, including solar 

photovoltaic systems (SPVs) and wind turbines (WTs), 

thereby reducing pollution. In addition to reducing 

interruptions caused by renewable energy, energy storage 

is an integral part of a dynamic energy balance. 

Microgrids have been modeled using autoregressive 

integrated moving averages and fast-forward selection 

methods to generate and minimize scenarios based on 

fluctuations in day-ahead market prices. Energy 

transmission has also been considered stable and reliable 

as a technique for managing and coordinating energy 

sharing between microgrids and energy grids in local 

environments. The effectiveness of the proposed model 

is verified using a case study of 24 modified IEEE buses. 

Interactive energy presents optimal scheduling for profit 

maximization among Home Microgrids (H-MGs) 

described in [23] presents an intelligent energy 

framework in which home microgrids (H-MGs) can 

cooperate in a multi-H-MG system by forming coalitions 

to gain market competition. In addition, considering 

demand fluctuations, renewable energy generation in 

multiple H-MG can be achieved with demand-side 

management strategies that try to use mechanisms to 

produce a smoother demand curve. Based on a recent 

study, interactions between multi-carrier energy systems 

provide the opportunity to achieve affordable and clean 

energy by using energy resources more efficiently. For 

example, [24], a transactional energy (TE) framework is 

proposed for optimal energy management of multiple 

energy hubs. Each hub is a multi-carrier energy system 

that performs daily energy management to plan its 

electrical, heating, and cooling demand profiles and 

manages its internal energy resources to reduce total 

energy costs and CO2 emission levels. By reviewing the 

state-of-the-art literature, it can be said that the optimal 

and economic planning of the energy system based on 

bilateral energy exchange, focusing on the planning of 

BESS and considering SPVs, has not been studied well. 

This paper examines the exchange of electricity between 

microgrids connected to and against the grid. It takes 

electricity tariff changes during the day into account, 

which optimizes resource scheduling.  

With the rapid growth of optimization problems, 

efficient optimization methods are presented. Early 

works focused on mathematical techniques which faces 

difficulties in the newly-emerged big-sized problems. 

This leads researchers to develop different meta-heuristic 

algorithms, such as swarm intelligence algorithms 

(SIAs), evolutionary algorithms (EAs), and algorithms 

based on biological phenomena[18-25]. 

However, some specific control parameters are 

defined in algorithms that must be set by the user in such 

algorithms These specific parameters of the algorithm 

require reasonable and appropriate tuning and are 

essential for these algorithms. Therefore, in various 

scientific research, efforts should be made to overcome 

this issue. One of these methods is the optimization 

algorithm based on training and learning (TLBO), which 

can be used without any adjustment parameters. 

In Section 2, after the definition of topology, the 

proposed method has been described in detail. Section 3 

describes the optimization method, and Section 4 

illustrates the analysis and discussion of the results. The 

paper concludes with Section 5. 

2. Proposed Method 

2.1. Energy trading model for microgrids based on 

peer-to-peer exchanges 

As shown in Fig. 1, a microgrid with renewable 

energy sources can exchange energy with the main grid 

and other microgrids. This energy exchange between 

microgrids is limited by technical and economic issues. 

The presence of BESS can improve the conditions for 

energy exchange between different areas[10-12]. 

Consequently, microgrid operators can increase their 

profitability. This structure is illustrated in Fig. 2, where 

the local electric load is placed near a renewable energy 

source and BESS in the left micro-grid and the right side 

micro-grid can be indirectly supplied by the main grid, 

BESS, or adjacent energy systems. 

 
Fig. 1. Example of energy exchange in connected 

microgrids without direct main grid intervention [12]. 

Energy exchange between these parts depends on the 

energy tariff. Based on this micro-network tariff, it can 

decide to sell, buy, or store energy in different situations. 

In such a structure, maximizing profit is the main goal of 

the energy management system for this micro-grid by 

providing the required energy from the available 

resources at the lowest cost. Due to the presence of 

storage, the operation planning should be done beyond 

24 hours in order to effectively utilize all installed 

equipment. 

https://doi.org/10.48308/ijrtei.2024.235531.1044
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Fig. 2.  Energy storage presence in a microgrid[12] 

 

2.2. Constraints and problem definition 

 

In this paper, the first microgrid includes solar cells, 

energy storage, and co-generation of electricity and heat 

(CHP) units. Each part has been modeled based on [25]. 

The operational constraints and limitations must be 

considered in accordance with economic factors in the 

optimization problem to achieve the optimal operational 

strategy. Therefore, the fitness function should include 

costs and revenues.  

The constraints and limitations that must be 

considered in the optimization problem in order to 

achieve the optimal efficiency of energy systems are in 

the form of relations (1) - (5) 

  

(1) 𝐸𝑒,𝑚𝑖𝑛 < 𝐸𝑒(𝑡) < 𝐸𝑒,𝑚𝑎𝑥        ∀𝑡 

(2) 𝐸(𝑡 + 1) = 𝐸(𝑡) + 𝑃𝑐(𝑡). 𝛥𝑡. 𝜂𝑐
𝑒

− 𝑃𝑑(𝑡). 𝛥𝑡. 1/𝜂𝑑
𝑒  

(3) 0 < 𝑃𝑐(𝑡) < 𝑃𝑐,𝑚𝑎𝑥 

(4) 0 < 𝑃𝑑(𝑡) < 𝑃𝑑,𝑚𝑎𝑥 

(5) 𝑃𝑐(𝑡). 𝑃𝑑(𝑡) = 0          ∀𝑡 

The hourly state of charge (SOC) is defined by 𝐸𝑒(𝑡). 
The SOC value should be limited according to (1) and 

updated according to (2) in each time interval. In (2), the 

values of 𝜂𝑐
𝑒   and 𝜂𝑑

𝑒  express the charging and 

discharging efficiency of the battery respectively, and  

limited between 0 and 1. This stipulation means that part 

of the power can be stored or restored from the battery 

storage system. The efficiency of charging and 

discharging also shows the amount of energy wasted 

during charging and discharging cycle. In addition, the 

storage capacity of the battery has a maximum and a 

minimum, which is mentioned in (1). 

The charging and discharging power of the battery is 

expressed by 𝑃𝑐(𝑡)  and 𝑃𝑑(𝑡)  respectively, while their 

upper and lower limits should be maintained between 

pre-defined values by (3) and (4) [25].The maximum 

charging and discharging power of the battery is 

expressed by 𝑃𝑐,𝑚𝑎𝑥  and 𝑃𝑑,𝑚𝑎𝑥  respectively. It is 

assumed that the battery can only be charged or 

discharged in each time interval. This rule expressed by 

(5). The initial amount of energy in the battery E(t =0) is 

equal to E0, and final value of E(t) should be equal with 

initial value of E0. 

The following relations define another constraints in 

controlling the amount of charging and discharging, 

which should be taken into account during 

implementation. 

(6) 𝑃𝑐(𝑡) − 𝑃𝑐(𝑡 − 1) ≤ 𝑃𝑑,𝑚𝑎𝑥 

(7) 𝑃𝑐(𝑡) − 𝑃𝑐(𝑡 − 1) ≥ 𝑃𝑐,𝑚𝑎𝑥 

 

These relationships are expressed in equations (6) for 

the charging cycle and (7) for discharge, indicate the 

amount of power input and output to the battery during 

one hour follows a threshold limit. 

Variable efficiency and fixed efficiency of energy 

conversion of CHP, are defined by the following 

equations. 

 𝑃𝐸,𝑖
𝑐ℎ𝑝

=

{
 
 
 
 

 
 
 
 𝑎𝑖

𝑐ℎ𝑝𝜙𝑖
𝑐ℎ𝑝
+𝑏𝑖

𝑐ℎ𝑝
𝑇𝑠,𝑖
𝑐ℎ𝑝
+𝑐𝑖

𝑐ℎ𝑝                    

𝑟1,𝑖𝜙𝑖
𝑐ℎ𝑝,max

≤ 𝜙𝑖
𝑐ℎ𝑝
≤ 𝜙𝑖

𝑐ℎ𝑝,min

𝑎𝑖
𝑐ℎ𝑝𝜙𝑖

𝑐ℎ𝑝
+𝑏𝑖

𝑐ℎ𝑝
𝑇𝑠,𝑖
𝑐ℎ𝑝
+𝑐𝑖

𝑐ℎ𝑝 −𝑤1,𝑖           

𝑟2,𝑖𝜙𝑖
𝑐ℎ𝑝,max

≤ 𝜙𝑖
𝑐ℎ𝑝
≤ 𝑟1,𝑖𝜙𝑖

𝑐ℎ𝑝,min

𝑎𝑖
𝑐ℎ𝑝𝜙𝑖

𝑐ℎ𝑝
+𝑏𝑖

𝑐ℎ𝑝
𝑇𝑠,𝑖
𝑐ℎ𝑝
+𝑐𝑖

𝑐ℎ𝑝−𝑤1,𝑖−𝑤2,𝑖

𝜙𝑖
𝑐ℎ𝑝,max

≤ 𝜙𝑖
𝑐ℎ𝑝
≤ 𝑟2,𝑖𝜙𝑖

𝑐ℎ𝑝,min

(8) 

𝑤1,𝑖 = (𝑟1,𝑖𝜙𝑖
𝑐ℎ𝑝,max

− 𝜙𝑖
𝑐ℎ𝑝
)𝜇1,𝑖                             (9) 

𝑤2,𝑖 = (𝑟2,𝑖𝜙𝑖
𝑐ℎ𝑝,max

− 𝜙𝑖
𝑐ℎ𝑝
)𝜇2,𝑖                           (10) 

𝑓𝑖
𝑐ℎ𝑝

= (3412 40611⁄ ) × (
𝑃𝐸,𝑖
𝑐ℎ𝑝

+𝜙𝑖
𝑐ℎ𝑝

𝜂
𝑖
𝑐ℎ𝑝 )                    (11) 

The (8) shows the variable efficiency performance of 

a CHP. In (9) and (10), μ1 and μ2 are positive coefficients 

that determine how much the production power is 

affected by efficiency variability. In addition, r1 and r2 

describe change in generated power. With known amount 

of thermal and electrical power produced by this 

equipment, it is possible to calculate the flow rate of the 

gas consumption based on equation (11) [26]. 

In equation (11), 𝜂𝑖
𝑐ℎ𝑝

 is the overall efficiency of 

CHP. To calculate the required gas in standard cubic 

meters (SCM), the output of equation (11) multiplied by 

the appropriate conversion factor. 

Another renewable source in this study is solar panel 

whose production rely on the amount of absorbed 

sunshine in the area. The output power of photovoltaic 

modules define by following equations [27]. 

(12) 𝑃𝑝𝑣 = 𝑃𝑆𝑇𝐶
𝐼𝑠

1000
[1 + 𝛾(𝑇𝑐 − 25)] 

In (12), PSTC is the maximum power of the 

photovoltaic module under standard test conditions. The 

Is is the solar radiation on the surface of the photovoltaic 

module. In addition, γ is the temperature coefficient of 

the photovoltaic module and Tc is the temperature of the 

photovoltaic cell (module) which is obtained from this 

equation: 

(13) 𝑇𝑐 = 𝑇𝑎 +
𝐼𝑠
800

(𝑇𝑁𝑂𝐶𝑇 − 20) 

In (13) where Ta is the ambient temperature and 

TNOCT is the nominal cell temperature. 

2.3. Power balancing and Load Sharing 

https://doi.org/10.48308/ijrtei.2024.235531.1044
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The sample microgrid shown in Fig. 3, includes 

sources as input and load as output. Genrarally, load of 

the micro-grid could be a combination of electric and 

thermal energy demand. There is also a battery that stores 

excess input energy and discharges it during peak hours. 

The input and output energy equations of the micro-grid 

can be expressed by (14) 

(14) 𝑃𝐺 = 𝑃𝑙𝑜𝑎𝑑 − 𝑃𝑃𝑉 ± 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦 

In (14), PG is the injected or delivered power from the 

main grid, PPV is the power produced by the photovoltaic 

system, and finally, Pbattery is the battery power. 

Obviously, negative PG means selling power to the grid, 

and otherwise, it means energy buying. 

Since the optimization problem is solved for the 

microgrid, as a load distribution problem, it is possible to 

ensure that the equality condition in (14) is satisfied. 

Although conventional methods of load sharing such as 

forward and backward do not have any prohibition in 

solving this problem. However, due to the lack of line 

restrictions in micro-grids, the problem can be modeled 

and solved as a single node. 

 

 
Fig. 3. Components of a micro-network equipped 

with different parts[12] 

2.4. Energy exchange tariff 

In the economic study of distribution networks and 

micro-grids, for achieving economic advantages and  

network loading reduction during peak times, different 

tariffs are proposed for different hours of the day and 

night. Three different tariffs can be considered as on-

peak, mid-peak, and off-peak in studies of electric power 

trading [18]. 

In electric energy trading, when the network load is 

low, the price of energy will drop significantly. 

Increasing the electric load and getting closer to the peak 

time leads to an increase in the price. Microgrids tend to 

receive power from the grid during the low-load hours of 

the grid and sell their excess generated power to the grid 

during peak hours. This is more likely to happen in the 

presence of energy storage systems. Therefore, it should 

be noted that the planning effect of peer-to-peer energy 

exchange is considered with the presence of microgrids 

next to the upstream distribution network. 

3. Optimization Method  

The TLBO algorithm has two hase and will be 

explained in the next section. 

3.1. Teaching-Learning Based Optimization (TLBO) 

The TLBO algorithm is based on the philosophy of 

the teaching-learning process in the classroom. In this 

method, the teacher's impact on the learners' is 

simulated[28]. Like other swarm intelligence ones, this 

method is a crowd-based stochastic optimization 

algorithm. In contrast with many meta-heuristic 

algorithms, it does not require setting specific 

parameters. Due to some characteristics of the 

optimization algorithm based on training and learning, 

such as simplicity and no specific parameter settings, fast 

convergence, and easy implementation and at the same 

time efficiency, it has been widely used to solve many 

problems from different fields of science and technology. 

This algorithm has two phases, which are explained in 

detail. 

Teacher phase 

In this phase, students are trying to improve their 

knowledge and grades based on the level of information 

and knowledge of the teacher. This phase constitutes the 

first part of the algorithm, based on which a reference 

should be used to improve the fitness function. On the 

other hand, in this phase, the teacher tries to move the 

class average (Meank) to his knowledge level (Teacher) 

by his abilities. Therefore, this difference in the level of 

knowledge between the average class and the teacher can 

be shown in the form of (15). 

(15) 𝐷𝑖𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑀𝑒𝑎𝑛𝑘 = 𝑇𝑒𝑎𝑐ℎ𝑒𝑟𝑘 − 𝑇𝐹𝑘 ×𝑀𝑒𝑎𝑛𝑘 

In (15), TFk expresses the learning coefficient. Based 

on this parameter, the average movement towards the 

teacher can be controlled. It is necessary to explain that 

the numerical value of this parameter is possibly chosen 

as 1 or 2. To do this, the expression round(1+rand(.)) is 

used, which can produce the numbers 1 or 2 because the 

round is used to render numbers. 

(16) 𝑋𝑛𝑒𝑤1
𝑘 = 𝑋𝑜𝑙𝑑

𝑘 + 𝑟𝑎𝑛𝑑(. ) × 𝐷𝑖𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑀𝑒𝑎𝑛𝑘 

By the difference obtained from (15), each student 

expresses his position using the relation (16). Obviously, 

in the iterative process until reaching the final results, if 

the new state created has a better objective function 

(minimum or maximum) from the point of view of 

optimizing the problem, it replaces the previous solution. 

Otherwise, the same previous solution is maintained in 

the initial population until reaching a more optimal point. 

It should be emphasized that the results obtained from the 

teacher phase are considered as the input values of the 

student phase. 

Learner phase 

The second phase of the algorithm is known as the 

learner phase. In this phase, based on interactions and 

compromises between students themselves, the level of 

knowledge and information in the class is improved. In 

such a structure, in a random process, each student 

chooses another student and changes his knowledge level 

by (17). 

(17) 

𝑋𝑛𝑒𝑤2

= {
𝑋𝑖 + 𝑟𝑎𝑛𝑑(. ) × (𝑋𝑖 − 𝑋𝑗)     𝑖𝑓         𝑓(𝑋𝑖) < 𝑓(𝑋𝑗)

𝑋𝑖 + 𝑟𝑎𝑛𝑑(. ) × (𝑋𝑗 −𝑋𝑖)    𝑒𝑙𝑠𝑒
      

𝑖 ≠ 𝑗 

If changing the level of knowledge related to the 

student in the training phase improves the fitness 

function, this position replaces the previous position in 

the primary population. Otherwise, the same previous 

position remains in the search space until a new result is 

https://doi.org/10.48308/ijrtei.2024.235531.1044
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obtained that is better than the previous one. As long as 

the algorithm is in the search space, similar to the teacher 

phase, the output obtained from the student phase is 

considered as the population input for the next iteration. 

In the last iteration, this result is declared as the global 

output. the pseudo-code of this algorithm is given in [27] 

3.2. The objective function 

Main goal here is profit maximizing related to the 

microgrid including renewable sources and energy 

storage. The microgrid is trading energy with the areas 

including the main grid and adjacent microgrid. The 

objective function defined as incomes and expenses from 

the sale and purchase of energy. Finally objective 

function is optimized by the proposed algorithm, taking 

into account the stated constraints to ensure that the 

required load of the microgrid is met. Therefore, the 

objective function (OF) defined as: 

(18) 𝑂𝐹 = 𝑚𝑎𝑥 (∑𝑅𝑈,𝑖 − (∑𝐶𝑈,𝑖 +∑𝐶𝑀𝐺,𝑖)) 

In (18), R U,i is the income from energy selling to the 

grid, while CU,i is the total electric energy cost purchased 

from the grid and CMG,i is the total cost paid to the 

adjacent microgrid for It is an energy exchange. It is 

obvious that the direction of the power between the 

microgrids can be positive or negative. The price of 

electricity supplied by a diesel generator in the adjacent 

microgrid is determined by a quadratic function [22]. 

(19) 𝐶𝑀𝐺,𝑖 = 𝐶𝑡𝑖𝑒−𝑙𝑖𝑛𝑒𝑚𝑔 = 𝑎𝑃𝑡𝑖𝑒−𝑙𝑖𝑛𝑒
2 + 𝑏𝑃𝑡𝑖𝑒−𝑙𝑖𝑛𝑒 + 𝑐  

Considering daily planning with an hourly resolution, 

in (19), T is the time interval (in hours). Also, Ctie-line mg is 

the cost of purchasing power from the adjacent 

microgrid, and Ptie-line is the power exchanged between 

the connected microgrids in hour i (in kilowatts). 

The electric energy purchased from the grid can be 

defined by (20). 

Where MUi represents the electricity tariff price at 

hour i, CUb is the maximum price of purchased electricity, 

and PU,i is the electricity injected from the adjacent 

microgrid. 

4. Simulation Results 

The main goal of this work is to obtain the optimal 

generation, stored and exchange of power in order to 

maximize the profit of the microgrid. Therefore the short-

term planning of the system for the next day is done 

through a case study in a multi-zone system. Also, direct 

energy exchange between interconnected microgrids has 

been modeled to examine their integration in energy 

exchanges. 

The case study includes the main grid and two 

microgrids. The first microgrid includes the electric 

consumer, solar resources, and the energy storage 

system. The second microgrid consist of diesel generator 

with simultaneous production of heat and power. 

Two different scenarios are implemented to show the 

effectiveness of the proposed method by numerical 

studies. Power exchange tariffs are considered according 

to Table I [28]. 

 

Table I. Electricity tariffs for different time periods 

[29]. 

Time period Buy coefficent Sell coefficent 

   

on-peak 

(17-22.9-12) 
1 0.56 

mid-peak 

(13-16) 
0.89 0.45 

off-peak 

(1-8 ،23-24) 
0.78 0.34 

 

 This table shows the electricity tariff in three periods. 

The maximum cost of electric energy is 0.13 $ per 

kilowatt-hour, which is intended for the purchase of 

electricity during peak periods. 

The solar power system installed in the first microgrid 

needs information such as radiation and temperature in 

the region to produce power at its output. Irradiance and 

temperature data by hour for a sample solar system are 

obtained from [29]. 

The hourly changes of the power consumption 

(electricity) of the first microgrid are based on the 

information from [30]. 

It is also assumed that the SOC of battery storage is 

equal to 5 kWh at the initial time. Other main parameters 

of the battery, such as charge and discharge rate, 

efficiency, and maximum and minimum capacity of the 

battery, are stated in Table II. 

 

Table II. Initial condition. 

Time period Value 

Length of time interval, T, (hours) 1 

Primary energy in the battery (kWh) 5 

Battery charging efficiency 0.9 

Battery drain efficiency 0.9 

Battery Capacity, (kWh) 25 

Minimum energy in the battery (kWh) 2.5 

 

To verify the effect of peer-to-peer energy exchange,  

two scenarios are defined to check the proposed 

optimization method. 

4.1. First scenario: microgrid just connected to the 

network 

In this scenario, the second microgrid and its 

equipment are not discussed, the interaction between the 

distribution network and the first microgrid with 

equipment such as a battery energy storage system, solar 

system, and load is considered. Firstly, the generated 

power of the solar system (as the only source in this 

microgrid) is examined. The amount of output power of 

the solar strongly depends on the radiation and is not very 

sensitive to the ambient temperature [27]. 

During different times when the cost of supplied 

electricity in the main grid is high, the microgrid can 

supply its demand from solar sources or use batteries. 

Table III describes the amount of generated and 

exchanged energy with the main grid.  

(20) 𝐶𝑈,𝑖 = 𝑇 ×𝑀𝑈𝑖 × 𝐶𝑈𝑏 × 𝑃𝑈,𝑖 
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Table III Power transfers in the network on a winter day (first scenario) 

Battery 

power 
Selling to 

the network 
Buy from 

network 
hour Battery power 

Selling to 

the network 
Buy from 

microgrid 
hour 

0 24.9571 0 13 1.1847- 0 0 1 

0 53.5624 0 14 0.5097- 0 0 2 

0 44.8574 0 15 0.4577- 0 0 3 

0 18.4489 0 16 0.3067- 0 0 4 

0 18.7695 0 17 4.9123 0 0 5 

1.3508- 0 0 18 0 5.4210 0 6 

4.7125- 0 2.7284 19 5.4640 2.4496 0 7 

7.1115- 0 0 20 10.5990 11.7315 0 8 

10.3415- 0 28.4815 21 0 39.1741 0 9 

0 0 32.7068 22 0 43.4589 0 10 

0 0 6.3793 23 0 28.6394 0 11 

0 0 6.7773 24 0 38.6344 0 12 

 

 

When the cost of purchased electricity from the grid 

is low, the microgrid can supply electricity from the grid 

and even store its excess in the battery to sell in other 

hours. This planning maximizes the profit of the 

microgrid owner. 

 
Fig. 4 The result of optimal planning in the first 

scenario. 

In Table III the second and third columns show the 

power purchased and sold from/to the grid, respectively. 

The last column describes how BESS takes part in the 

system. Fig. 4 shows early hours production of renewable 

energy sources is less than energy consumption of the 

microgrid, so the battery is been activated to compensate 

the energy shortage. 

Then, with the increase in solar energy production 

due to the sun's radiation, the microgrid's energy 

requirement is provided. The excess energy is managed 

by BESS. Due to the high price of buying electricity, 

energy is sold to the grid. Late at night, electricity 

production from renewable energy sources decreases 

again. Hence, the lack of microgrid energy consumption 

comes from BESS and the remaining energy demand, 

purchased from the grid. 

 
Fig. 5 Battery behaviour in the first scenario. 

Fig. 5 shows that in the early hours, sufficient energy 

is stored in BESS, and then the battery SOC decreases 

due to energy needs. BESS stored energy equals 100% 

near 9:00 AM due to maximum renewable energy 

generation from sources. At the end of the day, again, 

storage is depleted due to BESS energy usage. 

 Finally, Table IV describes income from selling 

energy to the grid and the cost of buying energy from the 

grid for 24 time periods. The summation of the fourth 

column values is the maximum system profit per day. 

Net zero summation of simultaneous buying and 

selling occurs during some time spans in a day. Because 

microgrid electric energy is directly supplied from the 

BESS at these times. Therefore, no electric energy is 

purchased from the main grid at these times.  

There will also be no network sales. Based on Table 

IV, it seen that costs ultimately lead to the final optimal 

value, which is a kind of confirmation of the correctness 

of the results. 
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Table IV Power transfers in the network on a winter day (first scenario) 

difference 
The cost of 

buying 
Profit 

from sale 
hour difference 

The cost of 

buying 
Profit 

from sale 
hour 

1.4600 0 1.4600 13 0 0 0 1 

3.1334 0 3.1334 14 0 0 0 2 

2.6242 0 2.6242 15 0 0 0 3 

1.0793 0 1.0793 16 0 0 0 4 

1.0980 0 1.0980 17 0 0 0 5 

0 0 0 18 0.2396 0 0.2396 6 

0.3547- 0.3547 0 19 0.1083 0 0.1083 7 

0 0 0 20 0.5185 0 0.5185 8 

3.7026- 3.7026 0 21 2.8519 0 2.8519 9 

4.2519- 4.2519 0 22 3.1638 0 3.1638 10 

0.6469- 0.6469 0 23 2.0849 0 2.0849 11 

0.6872- 0.6872 0 24 2.8126 0 2.8126 12 

11.5312 9.6432 21.1744 Total - - -  

 

 

4.2. The second scenario: microgrid connected to a 

network and adjacent to other microgrids 

In this scenario, it is assumed that a microgrid is 

connected to the primary energy system, allowing peer-

to-peer (P2P) energy trading with it. The microgrid is 

powered by a gas-powered generator, renewable energy 

sources, BESSes, primary grids, or adjacent systems. The 

existing fossil fuel-fired microgrid, whose cost function 

is defined in (8), has coefficients of a=0.0024, b=0.0118, 

and c=0.2940. The temperature of this equipment is 

assumed to be 90 degrees Celsius. 

It is obvious that the amount of gas purchased by the 

second microgrid depends on the consumption of the 

CHP diesel generator. 

 
Fig. 5 The amount of electrical and thermal load in 

the second microgrid 

The hourly amount of electrical and thermal load of 

the second microgrid that must be supplied in kW is 

shown in Fig. 5. 

The price of natural gas in gas distribution networks 

is considered a rate of 0.14 units per cubic meter fixed. 

The income of the second micro-grid is obtained from the 

difference in the amount of energy sales compared to the 

natural gas cost. The amount of exchanged power 

between two microgrids is illustrated in Fig. 6. 

 
Fig. 6 Energy exchange between microgrids in the 

second scenario 

In this scenario, the transfer limit between microgrids 

is considered to be 20 kilowatts by interconnection line. 

In this case, it should be determined which source 

provides energy to the other microgrid throughout the 

day. 

That is obvious, the surplus generated energy at this 

time was sold to the power network or stored in the 

BESS. Like the first scenario, the algorithm maximizes 
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the wholesome system profit. Optimization outputs are 

shown in Fig. 7. 

 

 
Fig. 7 The result of optimal planning in the second 

scenario 

The convergence curve of the objective function in 

the second scenario is shown in Fig. 8 and it has been 

seen that the most optimal value of the target function, is 

about $ 14.05 per day.  

 
Fig. 8 The convergence curve of the objective 

function in the second scenario 

 

 

Table V Hourly Power transfers between micro-grids in a day in Kwh (second scenario) 

Exchanged 

Energy 

Gas 

powered 

Generator 
CHP hour 

Exchanged 

Energy 

Gas 

powered 

Generator 
CHP hour 

10.1843 15.0159 2.4000 13 7.8589 8.3918 0.2400 1 

9.7184 19.8842 2.1600 14 7.1686 7.6311 0.3360 2 

9.9284 23.2441 1.9200 15 7.1305 7.5310 0.4320 3 

9.4652 23.1150 2.6400 16 6.8913 7.1136 0.7200 4 

9.9305 27.2684 2.8800 17 7.5057 7.7814 0.9600 5 

12.4762 26.3797 3.1200 18 7.2089 8.0134 1.3200 6 

13.0914 24.6110 3.3600 19 6.8939 7.8185 1.2000 7 

13.1478 22.5009 3.6000 20 7.4923 8.6569 0.9600 8 

19.9744 25.8776 3.1200 21 12.9342 14.0384 1.6800 9 

19.9958 26.0526 2.4000 22 12.5421 13.7087 2.1600 10 

6.7408 9.5932 2.1600 23 12.8247 13.9493 2.4000 11 

0.6872- 0.6872 0 24 2.8126 0 2.8126 12 

 

 

The results of generated and exchanged energy in the 

second micro-grid, are given in Table V. Results of this 

table show that the participation of the CHP in providing 

electric power is weaker than the diesel generator. This is 

due to the fact that the amount of electric production for 

this equipment depends on its heat. In addition, this 

equipment is cost-effective with certain gas consumption, 

and it can provide the thermal load and participate in 

electric power generation, which is one of the advantages 

of such equipment. 

 

5.  Conclusion 

This paper has studied microgrids that provide peer-

to-peer (P2P) energy trading with the neighboring and 

upstream grid, as well as a battery for storing excess 

energy to minimize costs and increase profits. To clarify 

the distinction between the employed optimization 

method, two scenarios are studied. 

 In the first scenario, a power network grid with DG, 

load, and battery is assumed, and the advantages of DG 

storage are considered. In the second scenario, a 

microgrid containing fossil fuel sources for the peer-to-

peer (P2P) energy trading market was placed near the 

primary power grid. TLBO algorithm employed for 

optimal operation of these microgrids, considering hourly 

electricity tariffs during one day. Due to the difference in 

the price of buying and selling electricity, the energy 

exchanges with the grid occur at optimal electricity prices. 

Based on the results, the profit from trading in the first 
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scenario on a winter day was $11.53 per day. In the second 

scenario, the presence of the neighboring microgrid, with 

the possibility of peer-to-peer energy exchange between 

microgrids, has led to an increase of about 21% compared 

to the first, which was a significant increase. Based on the 

results, this approach motivates microgrid operators to 

make the most economical decisions.  
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