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This paper presents the Non-monotonic Lyapunov (NML) approach for assessing 

the stability and stabilization of discrete time piecewise affine dynamical systems. 

Traditional Lyapunov methods are known for their conservatism, leading to the 

development of less conservative methods such as NML. Unlike traditional 

methods, the NML approach does not require strict monotonicity in demonstrating 

the descent of a Lyapunov functional. In this regard new stability and stabilization 

criteria based of NML are derived in the form of linear matrix inequalities (LMI) 

for piecewise affine systems. The NML based method is used to design a semi-

PID controller for multi-input multi-output piecewise systems. Also, an optimal 

semi-PID controller design algorithm is derived in this paper to achieve optimal 

trajectories and control signal . The effectiveness of this approach is demonstrated 

in the PID designing for such systems. The paper provides illustrative examples 

and simulation results to showcase the effectiveness of the NML approach. 
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1. Introduction 

Control and analysis of piecewise affine systems have 

gained significant attention in recent times due to their 

practicality in modelling and approximating hybrid and 

nonlinear systems [1-4]. In this regard the problem of 

global exponential stability analysis of the origin of 

continuous-time continuous piecewise affine (CPWA) 

systems is investigated in [1]. In [1], the stability analysis 

considers piecewise quadratic (PWQ) Lyapunov 

functions (LF) and a ramp-based implicit representation 

of PWA systems. Sufficient convex stability conditions 
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are obtained in the form of a Semidefinite Programming 

(SDP) problem. Also, researchers introduced the method 

of piecewise quadratic Lyapunov functions in [2] for 

analysing the stability of continuous-time Piecewise 

affine systems. The mentioned researches care about 

continues-times systems, while some techniques have 

also been explored for control and analysis of discrete-

time piecewise affine systems, as seen in studies such as 

[3] and [4]. The stability analysis of PWA discrete 

systems is studied in [3] without considering the 

conservatism reduction of Lyapunov method. A 
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comprehensive analysis and comparison of various 

stability techniques for discrete-time Piecewise affine 

systems can be found in [5]. 

When dealing with piecewise affine systems, a crucial 

task is to identify a stable admissible region. To achieve 

this, researchers have developed stability criteria in the 

form of linear matrix inequalities (LMIs) based on a 

Lyapunov functional (LF) approach, which is considered 

an effective method (see [6]). However, most LF-based 

methods require the LF to be monotonically decreasing, 

indicating a decrease in the system's initial energy. This 

strict decrease condition, can lead to conservatism. To 

address this issue, the non-monotonic Lyapunov (NML) 

technique can be used. In this approach, the 

monotonically decreasing condition in LF is replaced 

with a non-monotonic decreasing condition. Specifically, 

the non-increasing 1-step difference condition commonly 

used in stability analysis can be replaced with a non-

increasing condition in every m-step difference (see 

[19]). This allows the NML functional to increase locally 

for at most (m-1)-steps while maintaining an overall 

trend of Lyapunov functional in every m-step that is 

decreasing. The value of m is referred to as the non-

monotonicity step. By utilizing the NML technique, 

conservatism associated with monotonically decreasing 

LF-based methods can be reduced. This concept was 

firstly stated as finite-step Lyapunov method, introduced 

in [8]. Kruszewski also utilized this approach for 

stabilizing a class of discrete-time Takagi-Sugeno fuzzy 

models [9]. Later, Ahmadi coined the term "non-

monotonic" for this concept and established global 

asymptotic stability in discrete-time systems by replacing 

the monotonically decreasing condition with some non-

monotonic decreasing ones [10]. Derakhshan and Fatehi 

introduced a discrete non-monotonic Lyapunov method 

for analysing the stability of fuzzy control systems by 

relaxing the monotonicity requirement of Lyapunov's 

theorem [11]. The non-monotonic Lyapunov function 

was developed in [12] specifically for discrete-time 

switching linear systems. This idea was further extended 

to the N-step ahead Lyapunov function approach, which 

was used to design a robust H∞ controller for switched 

systems [13]. Subsequently, the non-monotonic 

technique was employed to design various controllers, 

such as optimal controllers [14-15], robust output 

feedback controllers [16], robust state feedback 

controllers [17], and robust H∞ controllers for a class of 

discrete-time nonhomogeneous Markovian jump linear 

systems [18]. In addition, state feedback controllers for 

discrete time-delay systems were designed using the non-

monotonic technique in [19]. Overall, the non-monotonic 

Lyapunov method has proven to be a versatile and 

effective tool for analysing the stability of piecewise 

affine systems and designing corresponding controllers. 

The control of piecewise linear systems is a highly 

sought-after area of study due to its theoretical 

complexity and practical applications. Although 

advanced control theories have been proposed, the 

proportional-integral-derivative (PID) controller remains 

the dominant choice in industry due to its simplicity and 

satisfactory performance for many industrial plants [20]. 

Most research on PID design techniques focuses on 

stable single-input-single-output (SISO) processes in 

continuous time, despite the fact that many industrial 

processes are multi-input-multi-output (MIMO) and 

must be implemented in discrete-time. To address these 

issues, researchers have proposed various approaches. 

For instance, Lyapunov technique was used to design a 

PID controller for networked control systems [21], while 

LQR technique was employed to design a state-space 

digital PID controller for multivariable analogue systems 

[22]. Another study presented a graphical tuning method 

for PI/PID controllers for first order and second order 

plus time delay systems using the dominant pole 

placement approach [23]. Additionally, an H∞ controller 

for continuous systems was designed using a neutral 

system approach [24]. 

One important consideration is how to design a PID 

controller for unstable multi-input multi-output time-

varying delay discrete-time systems using a less 

conservative method that maintains the simplicity of the 

PID control structure and existing loops in industry, 

while also ensuring stability and optimality. This paper 

proposes a non-monotonic piecewise linear Lyapunov 

(NMPL) approach to investigate the stability of 

piecewise linear discrete-time systems and offers an 

optimal PID design technique for unstable MIMO 

piecewise linear discrete-time systems. Compared to the 

ordinary piecewise Lyapunov method, the NMPL 

approach is less conservative, has a larger search space 

for Lyapunov functional candidate, and allows for 

choosing non-monotonicity step (m). Section 2 in this 

paper provides preliminary information, while Section 3 

presents the main results, including stability and 

stabilization theorems. Numerical examples are used to 

evaluate the proposed method in Section 4, and 

concluding remarks are given in Section 5. 

 

Nomenclature 

𝑅  (𝑅+) sets of real numbers (positive real 

numbers) 

ℛ𝑛×𝑛 n-dimensional Euclidean space 

I identity matrix with 𝑛 × 𝑛 dimension 
n number of states in state space 

representation 

𝑙 number of outputs in state space 

representation 

r number of inputs in state space 

representation 

0𝑛×𝑚 zero matrix with 𝑛 × 𝑚 dimension 

𝑃 > 0    
     (< 0)  

symmetric positive (negative) definite 

matrix 

‖. ‖ Euclidean vector norm 

𝐿 Lipschitz constant 

 

2. Definitions and preliminaries 

The purpose of this paper is stability analysis and PID 

controller design based on non-monotonic Lyapunov 

(NML) method for piecewise affine discrete time 

systems. Thus, a NML stability technique is introduced 

for stability analysis of discrete piecewise affine 

(DPWA) systems. The main principle in NML stability 

theorem is that sectionally incremental trend of 

functional is allowed; but the functional overall trend is 

decreasing. 
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 Let 𝑥(𝑘) ∈ 𝑅𝑛  be the underlying systems information, 

referred to as the states, and 𝑓: 𝑅𝑛 → 𝑅𝑛 express how the 

states change in time and it can be in general nonlinear, 

non-smooth, or uncertain. Then the discrete time systems 

can be represented as: 

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘)) (1) 

Then the monotonic Lyapunov stability theorem is 

represented as follows. 

Theorem 1 [10]. The solution 𝑥 = 0 of the system 

(1) is asymptotically stable, if there exist Lyapunov 

function 𝑉: 𝑅𝑛 → 𝑅 such that ∀𝑥(𝑘) ∈ 𝑅𝑛: 

 𝑉(0) = 0  

 𝑉(𝑥(𝑘)) > 0  .   ∀𝑥(𝑘) ≠ 0   

 ‖𝑥(𝑘)‖ → ∞    
 
⇒    𝑉(𝑥(𝑘)) → ∞ 

 𝑉(𝑥(𝑘 + 1)) − 𝑉(𝑥(𝑘)) ≤ 0      .   ∀𝑥 ≠ 0 ■ 

Theorem 2 represents non-monotonic Lyapunov stability 

theorem. 

Theorem 2 [10]. Consider dynamical discrete 

system (1). Then the origin is globally asymptotic stable 

if there exist non-negative scalers 𝛾𝑖 = 1  and an 

unbounded Lyapunov function 𝑉: 𝑅𝑛 → 𝑅 such that: 

 𝑉(0) = 0  

 𝑉(𝑥(𝑘)) > 0  .   ∀𝑥(𝑘) ≠ 0   

 ‖𝑥(𝑘)‖ → ∞    
 
⇒    𝑉(𝑥(𝑘)) → ∞ 

 𝛾𝑚−1 (𝑉(𝑥(𝑘 + 𝑚)) − 𝑉(𝑥(𝑘))) +

𝛾𝑚−2 (𝑉(𝑥(𝑘 + 𝑚 − 1)) − 𝑉(𝑥(𝑘))) + ⋯+

(𝑉(𝑥(𝑘 + 1)) − 𝑉(𝑥(𝑘))) < 0  

Using the Theorems 1 and 2 we are able to present the 

main results of this study in the next section. 

 

3. Main results 

In this paper, the non-monotonic Lyapunov (NML) 

stability technique is generalized for discrete piecewise 

affine (DPWA) systems. Eq. (2) represents a DPWA 

system model. 

𝑋(𝑘 + 1) = 𝐴𝑗𝑋(𝑘)  ,        𝑗 = 1, … , 𝑁 (2) 

where  𝐴𝑗 are different modes of a linear system. These 

types of systems are popular. They provide a practical 

framework for modelling and approximating of hybrid 

and nonlinear systems. It is well known that Schur 

stability of 𝐴𝑗s is not necessary nor it is sufficient for the 

overall system to be stable [25]. In this paper, also, 

stabilization theorems are proposed for multivariable 

DPWA systems based on generalized NML method. In 

the stabilization subsection, the problems of PID 

stabilization and optimal PID control will be presented. 

Thus, in the following, first NML stability analysis is 

introduced, then NML based stabilization theorems are 

proposed for PID designing.  

 

3.1.1. DPWA systems NML stability analysis 

As it was mentioned in previous parts, the non-

monotonic Lyapunov stability technique lets the 

Lyapunov functional increases locally in few limited 

steps, while the overall decreasing property is 

guaranteed. m-step difference of a functional is defined 

in (3): 

∆𝑚𝑉 ≜ 𝑉(𝑥𝑘+𝑚) − 𝑉(𝑥𝑘) (3) 

in which 𝑚 is the number of steps that the functional can 

be incremental. The parameter 𝑚  is called non-

monotonicity step. Using Theorem 2 and considering 

Lyapunov functions 𝑉𝑖(𝑥𝑘)  the m-step non-monotonic 

stable system will be presented in Theorem 3. 

Theorem 3 [10]. Consider dynamical discrete 

system (1) and considering Lyapunov functions 𝑉𝑖(𝑥𝑘). 

Then the origin is globally asymptotic stable if there exist 

non-negative scalers 𝛾𝑖  and m unbounded Lyapunov 

functions 𝑉𝑖(𝑥𝑘): 𝑅
𝑛 → 𝑅 such that: 

 ∑ 𝑖𝑉𝑖(0)𝑚
𝑖=1 = 0 

 ∑ 𝑉𝑖(0)𝑚
𝑖=𝑙 > 0  ,   ∀𝑥 ≠ 0 𝑓𝑜𝑟 𝑙 = 1,… ,𝑚   

 𝛾𝑚−1 ∆𝑚𝑉𝑚 + ⋯+ 𝛾1 ∆2𝑉
2 + ∆1𝑉

1 < 0  
 Assume a DPWA system as represented in (2). The 

Lyapunov functional (LF) candidate is considered in the 

form of (4): 

𝑉𝑖(𝑥𝑘) = 𝑋𝑇(𝑘)𝑃𝑖𝑋(𝑘)       ,     𝑖 = 1, … ,𝑚 (4) 

where the matrices 𝑃𝑖  are positive definite. Now, 

considering the definitions of LF candidate (4), Theorem 

4 is presented for stability analysis of DPWA system (2). 
Theorem 4. Linear DPWA system (2) with a given initial 

condition is m-step NML stable if there exist non-

negative scalers 𝛾𝑖  and positive definite matrices 𝑃𝑖 ∈
ℛ𝑛×𝑛, 𝑖 = 1, … ,𝑚, such that: 

∑ 𝑃𝑖

𝑚

𝑖 = 𝑙

> 0   ,      𝑙 = 1, … ,𝑚 (5) 

∑ (𝛾𝑙−1[𝐴𝑗𝑙

𝑇 …𝐴𝑗2
𝑇 𝐴𝑗1

𝑇 𝑃𝑙𝐴𝑗1𝐴𝑗2 … 𝐴𝑗𝑙
− 𝑃𝑙])

𝑚

𝑙 = 1
< 0    

                   ,     𝑗1, 𝑗2, … , 𝑗𝑚 = 1,… ,𝑁 

 

(6) 

Proof: In order to derive stability conditions, first,  

each term of ∆𝑚𝑉𝑖 is calculated in the following steps: 
∆1𝑉

1 = 𝑋𝑇(𝑘 + 1)𝑃1𝑋(𝑘 + 1) − 𝑋𝑇(𝑘)𝑃1𝑋(𝑘) 

∆2𝑉
2  = 𝑋𝑇(𝑘 + 2)𝑃2𝑋(𝑘 + 2) − 𝑋𝑇(𝑘)𝑃2𝑋(𝑘) 

      ⋮ 

∆𝑚𝑉𝑚 = 𝑋𝑇(𝑘 + 𝑚)𝑃𝑚𝑋(𝑘 + 𝑚)
− 𝑋𝑇(𝑘)𝑃𝑚𝑋(𝑘) 

(7) 

 

then using system (2) we have: 

 

∆1𝑉
1  = 𝑋𝑇(𝑘) [𝐴𝑗1

𝑇 𝑃1𝐴𝑗1
− 𝑃1] 𝑋(𝑘) 

∆2𝑉
2 = 𝑋𝑇(𝑘)[𝐴𝑗2

𝑇 𝐴𝑗1
𝑇 𝑃2𝐴𝑗1𝐴𝑗2 − 𝑃2] 𝑋(𝑘) 

      ⋮ 
∆𝑚𝑉𝑚 = 𝑋𝑇(𝑘)[𝐴𝑗𝑚

𝑇 …𝐴𝑗2
𝑇 𝐴𝑗1

𝑇 𝑃𝑚𝐴𝑗1𝐴𝑗2 …𝐴𝑗𝑚 − 𝑃𝑚]𝑋(𝑘) 

 

where 𝐴𝑗1𝐴𝑗2 … 𝐴𝑗𝑚 are m matrices which are multiplied, 

and   𝑗1, 𝑗2, … , 𝑗𝑚 = 1,… ,𝑁 . Using Theorem 3 and the 

above, the stability needs to have: 

https://doi.org/10.48308/ijrtei.2024.236414.1054
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𝛾𝑚−1[𝐴𝑗𝑚
𝑇 …𝐴𝑗2

𝑇 𝐴𝑗1
𝑇 𝑃𝑚𝐴𝑗1

𝐴𝑗2
… 𝐴𝑗𝑚

− 𝑃𝑚] + ⋯ 

+ 𝛾1[𝐴𝑗2
𝑇 𝐴𝑗1

𝑇 𝑃2𝐴𝑗1
𝐴𝑗2

− 𝑃2] + [𝐴𝑗1
𝑇 𝑃1𝐴𝑗1

− 𝑃1]

< 0 

(8) 

 

The inequality (8) can be written in the form of: 

∑ (𝛾𝑙−1[𝐴𝑗𝑙

𝑇 …𝐴𝑗2
𝑇 𝐴𝑗1

𝑇 𝑃𝑙𝐴𝑗1
𝐴𝑗2

… 𝐴𝑗𝑙
− 𝑃𝑙])

𝑚

𝑙 = 1
< 0    

                     ,     𝑗1, 𝑗2, … , 𝑗𝑚 = 1,… ,𝑁 

(9) 

should be noted that  𝛾0 = 1. This completes the proof.■ 
Remark 1: In inequality (9) there are m terms as 

𝐴𝑗𝑙

𝑇 …𝐴𝑗2
𝑇 𝐴𝑗1

𝑇 𝑃𝑙𝐴𝑗1
𝐴𝑗2

… 𝐴𝑗𝑙
. For instance, if 𝑚 = 3, then 

Eq. (9) will be as: 

𝛾2[𝐴𝑗3
𝑇 𝐴𝑗2

𝑇 𝐴𝑗1
𝑇 𝑃3𝐴𝑗1𝐴𝑗2𝐴𝑗3 − 𝑃3]

+ 𝛾1[𝐴𝑗2
𝑇 𝐴𝑗1

𝑇 𝑃2𝐴𝑗1
𝐴𝑗2

− 𝑃2]

+  [𝐴𝑗1
𝑇 𝑃1𝐴𝑗1 − 𝑃1]  <  0 

(10) 

 

In which 𝑗1, 𝑗2, 𝑗3 = 1,… ,𝑁. Inequality (10) is a set of 

conditions which should be checked for stability.  

Remark 2. In the Theorem 4, m-step non-

monotonicity leads to complicated and heavy 

calculations to check stability conditions (5) and (6). But 

in real application just 𝑚 = 2 can leads to a less 

conservative and more relaxed Lyapunov stability while 

lessen the calculations. Corollary 1 introduces 2-step 

stability.  

Corollary 1. Linear DPWA system (2) with a given 

initial condition is 2-step NMK stable if there exist non-

negative scaler 𝛾1  and positive definite matrices 𝑃𝑖 ∈
ℛ𝑛×𝑛, 𝑖 = 1,2 such that: 

𝑃1 > 0 (11a) 

𝑃1 + 𝑃2 > 0 (11b) 

𝛾1[𝐴𝑗2
𝑇 𝐴𝑗1

𝑇 𝑃2𝐴𝑗1𝐴𝑗2 − 𝑃2] +  [𝐴𝑗1
𝑇 𝑃1𝐴𝑗1 − 𝑃1]

< 0 

 ,   ∀ 𝑗1, 𝑗2 = 1,… ,𝑁 

(11c) 

Also, the stability conditions in Corollary 1 can be stated 

in another form using Schur complement lemma and 

considering 𝛾𝑖 = 1 . In this regard, Corollary 2 is 

introduced.  

Corollary 2. Linear DPWA system (2) with a given initial 

condition is 2-step NMK stable if there exist positive 

definite matrices 𝑃𝑖 ∈ ℛ𝑛×𝑛 , 𝑖 = 1,2 such that 

𝑃1 > 0 (12a) 

𝑃1 + 𝑃2 > 0 (12b) 

[

−(𝑃1 + 𝑃2) 𝐴𝑗1
𝑇 𝐴𝑗2

𝑇 𝐴𝑗1
𝑇

∗ −𝑃1
−1 0𝑛×𝑛

∗ ∗ −𝑃2
−1

] < 0      

(12c) 

where  𝑗1, 𝑗2 = 1,… ,𝑁. 

Proof: Considering (11c) with non-negative scaler 

𝛾1 = 1:  

[𝐴𝑗2
𝑇 𝐴𝑗1

𝑇 𝑃2𝐴𝑗1
𝐴𝑗2

− 𝑃2] +  [𝐴𝑗1
𝑇 𝑃1𝐴𝑗1

− 𝑃1]

< 0      

(13) 

Then using Schur complement Lemma: 

[
𝐴𝑗1

𝑇 𝑃1𝐴𝑗1 − 𝑃1 − 𝑃2 𝐴𝑗2
𝑇 𝐴𝑗1

𝑇

𝐴𝑗1𝐴𝑗2 −𝑃2
−1 ] < 0      (14) 

Again, using Schur complement Lemma: 

[

−𝑃1 − 𝑃2 𝐴𝑗1
𝑇 𝐴𝑗2

𝑇 𝐴𝑗1
𝑇

∗ −𝑃1
−1 0𝑛×𝑛

∗ ∗ −𝑃2
−1

] < 0      (15) 

The proof is done.  

Similarly, the m-step case can be stated as Corollary 3. 

Corollary 3. Linear DPWA system (2) with a given 

initial condition is m-step NMK stable if there exist 

positive definite matrices 𝑃𝑖 ∈ ℛ𝑛×𝑛, 𝑖 = 1,2, … ,𝑚, such 

that: 

∑ 𝑃𝑖

𝑙

𝑖 = 1

> 0   ,      𝑙 = 1, … ,𝑚 

[
 
 
 
 
 
−𝜑1 𝐴𝑗1

𝑇 𝐴𝑗2
𝑇 𝐴𝑗1

𝑇 ⋯ 𝐴𝑗𝑚
𝑇 … 𝐴𝑗2

𝑇 𝐴𝑗1
𝑇

∗ −𝑃1
−1 0𝑛×𝑛 ⋯ 0𝑛×𝑛

∗ ∗ −𝑃2
−1 ⋯ 0𝑛×𝑛

⋮ ⋮ ⋮ ⋱ 0𝑛×𝑛

∗ ∗ ∗ ∗ −𝑃𝑚
−1 ]

 
 
 
 
 

< 0 

𝜑1 = (𝑃1 + 𝑃2 + ⋯𝑃𝑚) 

(16) 

 

3.2. PID Controller Design 

In this section, the problems of designing a stabilizing 

PID controller and an optimal PID controller will be 

presented. Many plants in the industry can be properly 

estimated with pricewise affine linear models, which can 

be described as the following MIMO discrete state-space 

representation: 

{
𝑥(𝑘 + 1) = 𝐴𝑗𝑥(𝑘) + 𝐵𝑗𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑗𝑥(𝑘)                             
 (17) 

The matrix 𝐴𝑗 ∈ ℛ𝑛×𝑛  represents the system dynamics, 

𝐵𝑗 ∈ ℛ𝑛×𝑟  represents the input matrix, and 𝐶𝑗 ∈ ℛ𝑙×𝑛 

represents the output matrix. The aim is to design a 

MIMO PID controller for the system (17). The discrete 

PID controller can be formulated as: 

𝑢(𝑘) = 𝐾𝑝𝑒(𝑘) + 𝐾𝑖 ∑ 𝑒(𝑖)

𝑘−1

𝑖=0

  

+ 𝐾𝑑(𝑦(𝑘) − 𝑦(𝑘 − 1)) 

(18) 

where the difference between reference input 𝑟(𝑘) and 

the output 𝑦(𝑘) is defined as error: 
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𝑒(𝑘) = 𝑟(𝑘) − 𝑦(𝑘) (19) 

and 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 have proper dimensions. By applying 

the controller (18) to the plant (17), the resulting closed-

loop control system can be represented as a state-delay 

system: 

𝑥(𝑘 + 1) = 𝐴𝑗𝑥(𝑘) + 𝐵𝑗𝐾𝑝𝑗
𝑒(𝑘)  

+ 𝐵𝑗𝐾𝑖𝑗
∑ 𝑒(𝑖)

𝑘−1

𝑖=0

+ 𝐵𝑗𝐾𝑑𝑗
((𝑦(𝑘) − 𝑦(𝑘 − 1)) 

(20) 

There are different controller gains for each subsystem 𝑗 
of (17). Thus, the controller gains are indexed as 𝐾𝑝𝑗

, 𝐾𝑖𝑗
 

and 𝐾𝑑𝑗
.  Using (19) and (17) in (20), the following is 

reached. 

𝑥(𝑘 + 1) = 𝐴𝑗𝑥(𝑘) + 𝐵𝑗𝐾𝑝𝑗
𝑟(𝑘)

− 𝐵𝑗𝐾𝑝𝑗
𝐶𝑗𝑥(𝑘) + 𝐵𝑗𝐾𝑖𝑗

∑ 𝑒(𝑖)

𝑘−1

𝑖=0

+ 𝐵𝑗𝐾𝑑𝑗
𝐶𝑗𝑥(𝑘) − 𝐵𝑗𝐾𝑑𝑗

𝑦(𝑘 − 1) 

(21) 

We try to reformulate the control problem as output 

feedback. In other word, PID controller designing 

problem is changed into an output feedback control of an 

augmented system. For this purpose, new state vector is 

defined as follows: 

�̅�𝑇(𝑘) = [𝑥𝑇(𝑘) ∑ 𝑒𝑇(𝑖)

𝑘−1

𝑖=0

𝑦𝑇(𝑘 − 1)] (22) 

Considering (22) and using a variable change technique, 

Eq. (21) will be reformulated as follows: 

�̅�(𝑘 + 1) = 

[

𝜑2 𝐵𝑗𝐾𝑖𝑗
−𝐵𝑗𝐾𝑑𝑗

−𝐶𝑗 𝐼 0

𝐶𝑗 0 0

] �̅�(𝑘) + [

𝐵𝑗𝐾𝑝𝑗

𝐼
0

] 𝑟(𝑘) 

where 𝜑2 = 𝐴𝑗 − 𝐵𝑗𝐾𝑝𝑗
𝐶𝑗 + 𝐵𝑗𝐾𝑑𝑗

𝐶𝑗  

(23) 

Also, the output can be rewritten as (24) using new state 

vector: 

𝑦(𝑘) = [𝐶𝑗 0 0]�̅�(𝑘) (24) 

Finally, the closed loop augmented systems will be as 

follows: 

{
�̅�(𝑘 + 1) = �̃�𝑗�̅�(𝑘) + �̃�𝑗𝑟(𝑘)

𝑦(𝑘) = �̃�𝑗�̅�(𝑘)                           
 

(25) 

 

where 

�̃�𝑗 = [

𝜑2 𝐵𝑗𝐾𝑖𝑗
−𝐵𝑗𝐾𝑑𝑗

−𝐶𝑗 𝐼 0

𝐶𝑗 0 0

] 

�̃�𝑗 = [𝐶𝑗 0 0] ,  �̃�𝑗 = [

𝐵𝑗𝐾𝑝𝑗

𝐼
0

] 

𝜑2 = 𝐴𝑗 − 𝐵𝑗𝐾𝑝𝑗
𝐶𝑗 + 𝐵𝑗𝐾𝑑𝑗

𝐶𝑗  

(26) 

In the next two subsections, the stability of the 

augmented system (25) is investigated in the presence of 

the controller gains 𝐾𝑝𝑗
, 𝐾𝑖𝑗

 and 𝐾𝑑𝑗
. Then, by 

calculating these controller gains such that the system (25) 

is stable, the stabilizing controller is reached. 

3.2.1. PID stabilization 
The NML stability condition for pricewise affine systems 

given in Section 3.1 can be applied to design a PID 

controller for a closed loop system (25).  

The problem of stabilization is that the closed loop form 

should uses �̃�𝑗  , which contains the controller gains. In 

order to reduce the complexity, the non-monotonic 

approach can be simplified and reformulated. In this 

regard the following Theorem 5 is introduced 

Theorem 5. The closed-loop time-delay system (25) is 

globally asymptotically m-step non-monotonic 

stabilizable if there exist controller gains 𝐾𝑝𝑗
, 𝐾𝑖𝑗

, 𝐾𝑑𝑗
 

and positive definite matrices 𝑃𝑘   and 𝜓𝑘  , (𝑘 =
1,2, … ,𝑚) with appropriate dimension, such that 

[
−𝑃2 �̃�𝑗1

𝑇

�̃�𝑗1 −𝜓1

] < 0 

[
−𝑃3 �̃�𝑗2

𝑇

�̃�𝑗2 −𝜓2

] < 0 

[
−𝑃4 �̃�𝑗3

𝑇

�̃�3 −𝜓3

] < 0 

          ⋮ 

[
−𝑃1 �̃�𝑗𝑚

𝑇

�̃�𝑗𝑚 −𝜓𝑚

] < 0 

(27) 

 

where  𝑗1, 𝑗2, … , 𝑗𝑚 = 1,… ,𝑁. 
while minimizing    {𝑃1𝜓1 + 𝑃2𝜓2 + ⋯+ 𝑃𝑚𝜓𝑚},  
Subject to: 

[
𝑃1 𝐼
𝐼 𝜓1

] ≥ 0,    [
𝑃2 𝐼
𝐼 𝜓2

] ≥ 0 , … ,   [
𝑃𝑚 𝐼
𝐼 𝜓𝑚

] ≥ 0 

 

Proof: As it was stated in Theorem 2 the stability 

condition was 𝛾𝑚−1 ∆𝑚𝑉𝑚 + ⋯ + 𝛾1 ∆2𝑉
2 + ∆1𝑉

1 <
0 . But in many applications, that’s enough to let the 

Lyapunov functional candidate to increase in m-step and 

overlay decreasing. Thus, we consider ∆𝑚𝑉𝑚 < 0  for 

stability. Then: 

{
𝑥(𝑘 + 1) = 𝐴𝑗𝑥(𝑘) + 𝐵𝑗𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑗𝑥(𝑘)                             
 (28) 

by adding and subtracting the term 𝐴𝑗𝑚
𝑇  𝑃𝑚 𝐴𝑗𝑚 to (28): 

∆𝑚𝑉𝑚

= 𝑋𝑇(𝑘) [𝐴𝑗𝑚
𝑇 …𝐴𝑗2

𝑇 𝐴𝑗1
𝑇  𝑃1 𝐴𝑗1𝐴𝑗2 … 𝐴𝑗𝑚

− 𝑃1  

− 𝐴𝑗𝑚
𝑇  𝑃𝑚 𝐴𝑗𝑚 + 𝐴𝑗𝑚

𝑇  𝑃𝑚  𝐴𝑗𝑚] 𝑋(𝑘) < 0 

(29) 

where the parameter 𝑃𝑚 is positive definite. 

 Then, (29) can be rewritten in form of (30a). Then (30a) 

can be shown in the form of inequalities (30b) and (30c) 

in two steps by some manipulation. Then, by defining 

𝑦𝑚(𝑘) = 𝐴𝑗𝑚𝑋(𝑘) in (30c), (31) is derived. 
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∆𝑚𝑉𝑚

= 𝑦𝑚
𝑇 (𝑘) [𝐴𝑗𝑚−1

𝑇 …𝐴𝑗2
𝑇 𝐴𝑗1

𝑇  𝑃1 𝐴𝑗1
𝐴𝑗2

…𝐴𝑗𝑚−1

− 𝑃𝑚 ] 𝑦𝑚(𝑘) + 𝑋𝑇(𝑘)[𝐴𝑗𝑚
𝑇  𝑃𝑚 𝐴𝑗𝑚 − 𝑃1]𝑋(𝑘)

< 0 

(31) 

If the same procedure be repeated m time, then we will 

have: 

∆𝑚𝑉𝑚 = 𝑦2
𝑇(𝑘)[𝐴𝑗1

𝑇  𝑃1 𝐴𝑗1 − 𝑃2 ]𝑦2(𝑘) + ⋯

+ 𝑦𝑚
𝑇 (𝑘)[𝐴𝑗𝑚−1

𝑇  𝑃𝑚−1 𝐴𝑗𝑚−1
− 𝑃𝑚]𝑦𝑚(𝑘)

+ 𝑋𝑇(𝑘)[𝐴𝑗𝑚
𝑇  𝑃𝑚 𝐴𝑗𝑚

− 𝑃1]𝑋(𝑘) < 0 

(32) 

Obviously, inequality (32) holds and the system will be 

stable if all the following inequalities holds: 

(𝐴𝑗1
𝑇  𝑃1 𝐴𝑗1

− 𝑃2 ) < 0 (33.1) 

(𝐴𝑗2
𝑇  𝑃2 𝐴𝑗2

− 𝑃3 ) < 0 (33.2) 

               ⋮                  ⋮  

(𝐴𝑗𝑚−1
𝑇  𝑃𝑚−1 𝐴𝑗𝑚−1

− 𝑃𝑚) < 0 (33.(m-1)) 

(𝐴𝑗𝑚
𝑇  𝑃𝑚  𝐴𝑗𝑚 − 𝑃1) < 0 (33.m) 

Now inequalities (33) can be rewritten in the form of (34) 

using Schure complement Lemma: 

[
−𝑃2 𝐴𝑗1

𝑇

𝐴𝑗1 −𝑃1
−1

] < 0 

[
−𝑃3 𝐴𝑗2

𝑇

𝐴𝑗2 −𝑃2
−1

] < 0 

          ⋮ 

[
−𝑃1 𝐴𝑗𝑚

𝑇

𝐴𝑗𝑚 −𝑃𝑚
−1] < 0 

(34) 

The inequalities (34) are non-convex because of 𝑃𝑘
−1 

terms. These non-convex criteria can convert to convex 

LMI problem using Cone Complementarity Problem 

introduced in [26], which can be solved using a repetitive 

algorithm introduced in [27]. In this regard the positive 

definite matrices 𝜓𝑘  , (𝑘 = 1,2, …𝑚) should exists and 

the following LMIs should hold: 

[
−𝑃2 𝐴𝑗1

𝑇

𝐴𝑗1 −𝜓1
] < 0 

[
−𝑃3 𝐴𝑗2

𝑇

𝐴𝑗2 −𝜓2
] < 0 

          ⋮ 

[
−𝑃1 𝐴𝑗𝑚

𝑇

𝐴𝑗𝑚 −𝜓𝑚
] < 0 

(35) 

 

∆𝑚𝑉𝑚 = 𝑋𝑇(𝑘) [𝐴𝑗𝑚
𝑇 …𝐴𝑗2

𝑇 𝐴𝑗1
𝑇  𝑃1 𝐴𝑗1𝐴𝑗2 …𝐴𝑗𝑚

− 𝑃1  − 𝐴𝑗𝑚
𝑇  𝑃𝑚 𝐴𝑗𝑚 + 𝐴𝑗𝑚

𝑇  𝑃𝑚  𝐴𝑗𝑚] 𝑋(𝑘) < 0 (30a) 

∆𝑚𝑉𝑚 = 𝑋𝑇(𝑘) [𝐴𝑗𝑚
𝑇 (𝐴𝑗𝑚−1

𝑇 …𝐴𝑗2
𝑇 𝐴𝑗1

𝑇  𝑃1 𝐴𝑗1𝐴𝑗2 … 𝐴𝑗𝑚−1
− 𝑃𝑚) 𝐴𝑗𝑚 ] 𝑋(𝑘)

+ 𝑋𝑇(𝑘)[ (𝐴𝑗𝑚
𝑇  𝑃2 𝐴𝑗𝑚 − 𝑃1) ]𝑋(𝑘) < 0 

(30b) 

∆𝑚𝑉𝑚 = 𝑋𝑇(𝑘)𝐴𝑗𝑚
𝑇 [(𝐴𝑗𝑚−1

𝑇 …𝐴𝑗2
𝑇 𝐴𝑗1

𝑇  𝑃1 𝐴𝑗1𝐴𝑗2 … 𝐴𝑗𝑚−1
− 𝑃𝑚) ] 𝐴𝑗𝑚𝑋(𝑘)

+ 𝑋𝑇(𝑘)[ (𝐴𝑗𝑚
𝑇  𝑃𝑚  𝐴𝑗𝑚 − 𝑃1) ]𝑋(𝑘) < 0 

(30c) 

while minimizing    {𝑃1𝜓1 + 𝑃2𝜓2 + ⋯+ 𝑃𝑚𝜓𝑚},  
Subject to: 

[
𝑃1 𝐼
𝐼 𝜓1

] ≥ 0,    [
𝑃2 𝐼
𝐼 𝜓2

] ≥ 0, … ,   [
𝑃𝑚 𝐼
𝐼 𝜓𝑚

] ≥ 0 

The closed loop augmented system (25) is considered. 

For stability analysis of closed loop augmented system 

(PID designing procedure), the matrices 𝐴𝑗  in (35) are 

replaced with closed loop matrix coefficient �̃�𝑗 . Then 

inequality (27) is reached and the proof is completed.  
Remark 3.  The obtained controller in Theorem 5 

can stabilize both stable and unstable systems. The plant 

can be Multi-Input Multi-Output (MIMO).   

 Remark 4.  By Choosing bigger m, the 

computations will increase as the conservatism decreases. 

Choosing m is a trade-off between heavy computations 

and reducing the conservatism. In most of the 

applications it may be enough to choose 𝑚 = 2. 

3.2.2. Optimal PID control 

In subsection 3.2.1, the stability is analysed for the 

closed-loop system (25). But the obtained controller may 

be non-optimal. In this regard, a performance index is 

introduced in this section and the aim is to minimize it to 

reach optimal performance. Assume the following cost 

function for the system (25): 

𝐽 = ‖�̅�(𝑘)‖
𝑅

2
+ ‖�̂�(𝑘)‖𝐹

2  (36) 

where ‖�̅�(𝑘)‖𝑅
2 = ∑ �̅�𝑇(𝑘)𝑅�̅�(𝑘)∞

𝑘=0
, ‖�̂�(𝑘)‖𝐹

2 =
∑ �̂�𝑇(𝑘)𝐹�̂�(𝑘)∞

𝑘=0  and 𝑅 ≔ �̅�[0 𝐼 0] ,  �̅�  and 𝐹  are 

weighting factors.  

Assuming the control law as (18), using the state space 

representation (17), Eq. (19) and new state vector defined 

in (22), we can rewrite control law as follows: 

�̂�(𝑘) = 𝐾𝑝𝑗
𝑒(𝑘) + 𝐾𝑖𝑗

∑ 𝑒(𝑖)

𝑘−1

𝑖=0

+ 𝐾𝑑𝑗
(𝑦(𝑘) − 𝑦(𝑘 − 1))

= 𝐾𝑗�̅��̅�(𝑘) + 𝐾𝑗�̅�𝑟(𝑘) 

(37) 
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in which �̅� = [

−𝐶𝑗 0 0

0 𝐼 0
−𝐶𝑗 0 𝐼

] , �̅� = [
𝐼
0
0
]  and 𝐾𝑗 =

[𝐾𝑝𝑗
𝐾𝑖𝑗

𝐾𝑑𝑗]. 
 

where 𝑗 = 𝑗1, 𝑗2, … , 𝑗𝑚 = 1,… ,𝑁. Considering the state-

space representation (25) with zero initial conditions and 

𝑟(𝑘) = 0, the objective function for the stability of the 

system in the presence of PID controller and optimal 

performance of the controller is assumed as (38): 

�̅�𝑇(𝑘)𝑅�̅�(𝑘) + �̂�𝑇(𝑘)𝐹�̂�(𝑘) ≤ −∆𝑚𝑉(𝑘) (38) 

summing both sides of the inequality (38) from 0 to ∞, 

we have: 

∑ �̅�𝑇(𝑘)𝑅�̅�(𝑘)

∞

𝑘=0

+ ∑ �̂�𝑇(𝑘)𝐹�̂�(𝑘)

∞

𝑘=0

≤ 𝑉(𝑥(0)) − 𝑉(𝑥(∞)) 

(39) 

 

Since the stability of the system has been provided, it 

follows that 𝑉(𝑥(𝑘)) → 0 as 𝑘 → ∞; Hence: 

𝐽 ≤ 𝑉(𝑥(0)) (40) 

which implies that the upper bound of the cost function 

depends on the initial condition. Considering (4) we 

have: 

𝐽 ≤ 𝑋𝑇(0) 𝑃𝑗  𝑋(0) (41) 

Suppose that the initial state of the system is arbitrary but 

belongs to the set 𝑆 = {𝑥(0) ∈ 𝑅𝑛:   𝑥(0) = 𝑈𝑀,
𝑀𝑇𝑀 ≤ 1}; where U is a given matrix. Thus considering 

Eq. (22), the cost bound then leads to 

𝐽 ≤ [

𝑥(0)

𝑒(−1)

𝑦(−1)
]

𝑇

𝑃𝑗 [

𝑥(0)

𝑒(−1)

𝑦(−1)
] = 𝑀𝑇𝑈𝑇𝑃𝑗𝑈𝑀

≤ 𝜆𝑚𝑎𝑥(𝑈
𝑇𝑃𝑗𝑈)𝑀𝑇𝑀

≤ 𝜆𝑚𝑎𝑥(𝑈
𝑇𝑃𝑗𝑈) 

(42) 

 

where 𝜆𝑚𝑎𝑥(. ) denotes the maximum eigenvalue of the 

matrix (. ) . Also, it is assumed that 𝑒(−1) = 0  and 

𝑦(−1) = 0. Then the upper bound of the cost function 

will be as: 

𝐽 < 𝜆𝑚𝑎𝑥(𝑈
𝑇𝑃𝑗𝑈) (43) 

The obtained inequality (43) is the upper bound of cost 

function which depends on the parameter 𝑃𝑗 . This 

obtained condition should be considered in calculations. 

The following theorem gives optimal NML based 

stabilization conditions. 

Theorem 6. The closed-loop time-delay system (25) with 

𝑟(𝑘) = 0  is optimally globally asymptotically m-step 

non-monotonic stabilizable if there exist controller gains 

𝐾𝑝 , 𝐾𝑖 , 𝐾𝑑 , and positive definite matrices 𝑃𝑘 , 𝜓𝑘  ∈

𝑅𝑛  , (𝑘 = 1,2, … ,𝑚),  and any matrix such that: 

[
−𝑃2 �̃�𝑗1

𝑇

�̃�𝑗1 −𝜓1

] < 0 (44.1) 

[
−𝑃3 �̃�𝑗2

𝑇

�̃�𝑗2
−𝜓2

] < 0 (44.2) 

[
−𝑃4 �̃�𝑗3

𝑇

�̃�𝑗3
−𝜓3

] < 0 

            ⋮ 

(44.3) 

 

⋮ 

[

−𝑃1 + 𝑅 𝐾𝑗𝑚
𝑇 �̅�𝑇 �̃�𝑗𝑚

𝑇

∗ −𝐹−1 0𝑛×𝑛

∗ ∗ −𝜓𝑚

] < 0 (44.m) 

 

where 𝑗1, 𝑗2, … , 𝑗𝑚 = 1,… ,𝑁. 

while minimizing    {𝑃1𝜓1 + 𝑃2𝜓2 + ⋯+ 𝑃𝑚𝜓𝑚},  

Subject to: [
𝑃1 𝐼
𝐼 𝜓1

] ≥ 0 , [
𝑃2 𝐼
𝐼 𝜓2

] ≥ 0 ,…, 

[
𝑃𝑚 𝐼
𝐼 𝜓𝑚

] ≥ 0 

furthermore, the closed-loop cost function Eq. (43) 

should satisfies; then the output feedback control law Eq. 

(37) is a guaranteed cost control law. 

Proof: Considering the closed loop system (25), the 

designing problem of PID controller reduces to the 

design of a stable state feedback controller as given in 

Theorem 5 including the extra optimality condition (38). 

To establish the optimal controller for the closed-loop 

PID control system, consider the following objective 

function: 

�̅�𝑇(𝑘)𝑅�̅�(𝑘) + �̂�𝑇(𝑘)𝐹�̂�(𝑘) ≤ −∆𝑚𝑉(𝑘) (45) 

Considering (37) with 𝑟(𝑘) = 0 , the Eq. (45) can be 

written in the following form: 

�̅�𝑇(𝑘)𝑅�̅�(𝑘) + (𝐾𝑗𝑚�̅��̅�(𝑘))
𝑇

𝐹 (𝐾𝑗𝑚�̅��̅�(𝑘))

< −∆𝑚𝑉(𝑘) 
(46) 

in which 𝑅 ≔ �̅� [0 𝐼 0] , where �̅�  and 𝐹  are 

weighting factors selected by the designer. Then using 

(28): 

�̅�𝑇(𝑘) [�̃�𝑗𝑚
𝑇 … �̃�𝑗2

𝑇 �̃�𝑗1
𝑇  𝑃1 �̃�𝑗1�̃�𝑗2 … �̃�𝑗𝑚

− 𝑃1] �̅�(𝑘)

+ �̅�𝑇(𝑘)𝑅�̅�(𝑘)

+ (𝐾𝑗𝑚
�̅��̅�(𝑘))

𝑇

𝐹 (𝐾𝑗𝑚
�̅��̅�(𝑘)) < 0 

(47) 

which can be written in the form of: 

�̅�𝑇(𝑘) [�̃�𝑗𝑚
𝑇 … �̃�𝑗2

𝑇 �̃�𝑗1
𝑇  𝑃1 �̃�𝑗1

�̃�𝑗2
… �̃�𝑗𝑚

− 𝑃1

+ 𝑅 + �̅�𝑇 𝐾𝑗𝑚
𝑇 𝐹 𝐾𝑗𝑚

�̅�] �̅�(𝑘)

< 0 

(48) 

 

In order to hold (48), it is sufficient to have 

�̃�𝑗𝑚
𝑇 … �̃�𝑗2

𝑇 �̃�𝑗1
𝑇 𝑃1�̃�𝑗1�̃�𝑗2 … �̃�𝑗𝑚 − 𝑃1 + 𝑅 +

�̅�𝑇𝐾𝑗𝑚
𝑇 𝐹𝐾𝑗𝑚�̅� < 0. Then, in a similar approach to proof 

of Theorem 5, and using Schur complement lemma: 
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[
−𝑃2 �̃�𝑗1

𝑇

�̃�𝑗1 −𝑃1
−1

] < 0 
(49.1) 

[
−𝑃3 �̃�𝑗2

𝑇

�̃�𝑗2
−𝑃2

−1
] < 0 

(49.2) 

[
−𝑃4 �̃�𝑗3

𝑇

�̃�𝑗3
−𝑃3

−1
] < 0 

            ⋮ 

(49.3) 

 

⋮ 

[

−𝑃1 + 𝑅 �̅�𝑇𝐾𝑗𝑚
𝑇 �̃�𝑗𝑚

𝑇

∗ −𝐹−1 0𝑛×𝑛

∗ ∗ −𝑃𝑚
−1

] < 0 

(49.m) 

 

The inequalities (49) are non-convex because of 𝑃𝑘
−1 

terms. Using Cone Complementarity Problem introduced 

in [26] and the same as Theorem 5, (44) can be reached. 

In this regard the following LMIs should hold: 

[
−𝑃2 �̃�𝑗1

𝑇

�̃�𝑗1 −𝜓1

] < 0 (50.1) 

[
−𝑃3 �̃�𝑗2

𝑇

�̃�𝑗2 −𝜓2

] < 0 (50.2) 

[
−𝑃4 �̃�𝑗3

𝑇

�̃�𝑗3 −𝜓3

] < 0 

            ⋮ 

(50.3) 

 

⋮ 

[

−𝑃1 + 𝑅 𝐾𝑗𝑚
𝑇 �̅�𝑇 �̃�𝑗𝑚

𝑇

∗ −𝐹−1 0𝑛×𝑛

∗ ∗ −𝜓𝑚

] < 0 (50.m) 

 

where 𝑗1, 𝑗2, … , 𝑗𝑚 = 1,… ,𝑁. 

while minimizing    {𝑃1𝜓1 + 𝑃2𝜓2 + ⋯+ 𝑃𝑚𝜓𝑚},  
Subject to:  

[
𝑃1 𝐼
𝐼 𝜓1

] ≥ 0 

[
𝑃2 𝐼
𝐼 𝜓2

] ≥ 0 

[
𝑃3 𝐼
𝐼 𝜓3

] ≥ 0 

       ⋮ 

[
𝑃𝑚 𝐼
𝐼 𝜓𝑚

] ≥ 0 

(51) 

 

If matrix inequalities (44.1) to (44.m) have feasible 

solution 𝑃𝑘’s , 𝜓𝑘 and 𝐾𝑗𝑚 = [𝐾𝑝𝑗𝑚
𝐾𝑖𝑗𝑚

𝐾𝑑𝑗𝑚], and 

the corresponding closed-loop cost function (43) 

satisfies; then the output feedback control law is a 

guaranteed cost control law.  

 

4. Numerical example 

The results presented in this section were generated using 

MATLAB (version 2023a) on a computer equipped with 

an Intel(R) Core (TM) i5 CPU M430 running at 2.27 

GHz and 4 GB of RAM, operating on Windows 10. The 

YALMIP toolbox, along with the SeDuMi and SDPT3 

solvers, were utilized for the computations. It should be 

emphasized that minor differences in outcomes may arise 

by adjusting the settings and selecting different solvers. 

Example 1. The following matrices defining dynamical 

model of a linear system:  

𝐴1 = [

0.4 0

−√7
8⁄ 0

]  ,      𝐴2 = [0 √7
8⁄

0 0.4

] (52) 

The system's stability can’t be demonstrated using the 

conventional Lyapunov approaches, which was verified 

using the MATLAB LMI toolbox. Conversely, the 

introduction of the non-monotonic Lyapunov method 

(Theorem 4) ensures stability, leading to the attainment 

of following positive definite matrices. 

𝑃1 = [
90.87 0

0 90.87
]  ,      𝑃2 = [

67.6 0
0 67.6

] 

In this example, the non-monotonicity step is set at 𝑚 =
2. It is evident that the non-monotonic based approach 

introduced here is less conservative. 

         

        Example 2. Consider system (17) with the 

following modes: 

𝐴1 = [
1 0.1

−0.5 1
] , 𝐵1 = [

0
1
] ,

𝐶1 = [0 1] 

𝐴2 = [
0.5 0.6

−0.6 0.5
]  ,     𝐵2 = [

1
0
]  ,   𝐶2

= [1 0] 

(53) 

For the two components defined in (53), conventional 

Lyapunov approaches can’t guarantee the stability of 

closed loop system. But using NML based method in 

Theorem 5 provides an output feedback semi PID 

controller which stabilizes this system. Therefore, 

assuming non-monotonicity step 𝑚 = 2, the BMIs (27) 

have feasible solutions: 

𝑃1 = [

2144.7 291.1 −772.6 −81.1
291.1 1492.2 −795 −129.2

−772.6 795 769.5 79.2
−81.1 129.2 79.2 75.6

] 

𝑃2 = [

2151.4 295.1 −773.9 −77.9
295.1 1490.8 −794.9 −130.4

−773.9 −749.9 768.3 79.8
−77.9 −130.4 79.8 74.2

] 

 

And the controller gains are as follows: 

 

𝐾1 = [1.4232 0.7281 −0.0288] 
𝐾2 = [0.7053 0.6 −0.059] 

 

The following represents non-monotonic decreasing of 

Lyapunov Function. Is can be seen that Lyapunov 
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Function increase locally in some samples, but it is 

overall decreasing. As it is seen in Fig. 1, increasing steps 

are less than 2 steps, because non-monotonicity step is 

𝑚 = 2 and the Lyapunov Function is allowed to increase 

up to 2 steps. 

 
Fig. 1. Non-monotonic decreasing of Lyapunov 

function  

 

The following show state trajectories form initial 

condition 𝑥0 = [
1
1
] and 𝑢(𝑡) = 0. 

 
Fig. 2. State Trajectories of first component of (53) 

Switching pattern between two subsystems in (52) is 

considered randomly and as follows: 

 
Fig. 3. Switching pattern between subsystems 

 

The step responses of the system are illustrated in Fig.4. 

It shows that designed semi-PID controller stabilize the 

system.  

 
(a). Step response of first component 

 

 
(b). Step response of Second component 

Fig. 4. step response of components of the output of 

system (53) 

 

The Fig. 5 represents control signal of each mode in 

system (53).   

 
(a) 

 
(b) 

Fig. 5. Control Signal of system (53). (a): 1’st 

Component, (b): 2nd component 

 Example 3. An optimal PID controller is designed 

using Theorem 6 for the system )53(. Let the, the 

weighting matrices �̅�  =  𝐼𝑛  and 𝐹 =  0.1𝐼𝑛 . Therefore, 

NML based optimal PID controller can reduce the 

overshoot in step response as the state trajectories are 

limited in cost function. 

 
(a) Step response of first component 
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(b) Step response of 2nd component  

Fig. 6. Optimal PID controller design for (53) with 

same �̅�  =  𝐼𝑛   

 

Fig. 6 compares the changing in the values for F with 

similar R. When R keeps the same, a larger F punishes 

the control signal, thus, the control signal will be softer. 

However, larger F leads to greater tracking error. The 

optimal semi-PID controller can be designed for unstable 

multi-input multi-output systems using Theorem 6 and 

weighting matrices R and F can be selected by control 

designer in appropriate way to have suitable responses.  

 

5. Conclusion 

In this paper, we introduced the Non-monotonic 

Lyapunov (NML) approach as a novel method for 

evaluating the stability and stabilization of discrete-time 

piecewise affine dynamical systems. The NML approach 

offers a less conservative alternative to traditional 

Lyapunov methods, allowing for more flexibility in 

demonstrating Lyapunov functional descent without 

strict monotonicity requirements. By deriving new 

stability and stabilization criteria in the form of linear 

matrix inequalities (LMI) tailored for piecewise affine 

systems, we have shown the applicability and 

effectiveness of the NML approach. Moreover, we 

utilized the NML-based method to design a semi-

Proportional-Integral-Derivative (PID) controller for 

multi-input multi-output piecewise systems, showcasing 

its practical utility in control system design. Through 

illustrative examples and simulation results, we have 

demonstrated the efficacy and advantages of employing 

the NML approach in PID controller design which shows 

that overall, the NML approach presents a promising 

avenue. 
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