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This paper applies the Q-learning method, a reinforcement learning (RL) technique, 

to a quadrotor for generating a low-noise trajectory while avoiding obstacles. The 

proposed method introduces a novel Q-value function, constructing a 2D surface 

that preserves key environmental features. This approach simplifies the path-

finding problem in a 3D space to a 2D space problem. By relying on data derived 

from the pre-calculated 2D surface, online path planning can be executed in the 

presence of unpredictable environmental changes, significantly reducing 

computational complexity and addressing a key challenge in the field. The Q-

learning algorithm is developed by defining two cost functions to avoid obstacles 

and reduce the perceived noise level. To calculate the Sound Pressure Level (SPL) 

of the noise, the perceived noise model is derived using the Gutin equation. 

Additionally, the Octomap 3D optimizer is employed to map obstacles. Unlike 

related works, this approach employs noise observers vertically and horizontally, 

leading to more accurate environmental mapping. Furthermore, the proposed 

algorithm ensures global optimal paths while avoiding the local minima that are 

commonly encountered in similar optimization approaches. Finally, the 

performance of the proposed methodology in pathfinding and noise reduction is 

demonstrated through a practical example involving a quadrotor. 
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1. Introduction 

     Quadrotors have gained considerable interest due to 

their small size, low cost, and maneuverability. These 

aerial devices are ideal for various outdoor applications, 

particularly in urban areas, such as delivery services, 

response to disasters, and inspections [1, 2].  

     Using a quadrotor in urban areas amplifies the 

challenges of dealing with obstacles, which can be either 

fixed [3-5] or mobile [6]. Song et al. [7] proposed a near-

time-optimal trajectory generation method for drones 

navigating through a set of waypoints with fixed 

obstacles. For mobile obstacles, trajectory finding often 

takes place online. Chen et al. [8] introduced a motion 

primitive generation algorithm focusing on time 
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optimality, utilizing an integrated solver combining 

offline and online components for mobile obstacles.  

    Among trajectory-finding methods for unmanned aerial 

vehicles (UAVs), learning-based approaches have gained 

significant attention due to their ability to identify optimal 

paths while considering environmental constraints [9, 10]. 

Li et al. [11] proposed a deep reinforcement learning (RL) 

method for path planning in intelligent vehicles, enabling 

them to adapt to environmental changes. Battocletti et al. 

[12] introduced an RL-based approach for exploring 

unknown environments, where two RL agents are trained: 

the first assigns waypoints to multiple UAVs and explores 

the environment, while the second agent implements a 

path planning algorithm to guide the UAVs efficiently. 

Rubí et al. [13] applied RL and data from a LIDAR sensor 
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to detect obstacles and precisely track a path by adjusting 

the vehicle’s velocity to match the path’s shape. Among 

RL-based approaches, Q-learning has been widely 

adopted for path-finding problems. Zhang et al. [14] have 

utilized the Q-learning algorithm to obtain optimal or 

suboptimal safe flight trajectories by constantly learning 

to maximize the reward function. Fuzzy reinforcement 

learning was proposed by Tran et al. [15] and applied to 

compute the Strictly Negative Imaginary (SNI) controller 

gain. 

     Research on path-finding characteristics has shown 

that the path pattern can significantly influence 

application behaviors, including factors such as energy 

consumption [16, 17], speed [18], conservativeness [19], 

and noise effects [20, 21]. Han et al. [19] proposed a grid-

optimized indoor path-planning algorithm for UAVs in 

dense environments. Morrell et al. [22] compared three 

trajectory algorithms, evaluating the results based on path 

features such as speed and the proximity of the quadrotor 

to obstacles. 

     On the other hand, noise reduction has been addressed 

through various methods based on the type of observers 

and UAVs. Some works studied the application dynamics, 

considering their aeroacoustics or aerodynamic 

characteristics. Wu et al. [23] proposed an aerodynamic 

noise reduction method to improve the spanwise blade 

shape of electric propeller aircraft. Treuren et al. [24] 

defined propeller tip modifications to reduce acoustic 

noise in quadrotor propellers. Some studies have designed 

controllers aimed at reducing noise. For example, Mysore 

et al. [25] focused on training RL agents for a quadrotor, 

considering the noisy control process and employing a 

new reward structure. Guan et al. [26] developed a noise 

attenuation method for a quadrotor using phase 

synchronization based on genetic optimization. Recently, 

the problem of path-finding focusing on noise reduction 

has gained significant attention and has been addressed in 

only a limited number of studies. Indirect trajectory 

optimization for small aircraft and reducing the noise 

impact is studied by Galles et al. [27]. Dieumegard et al. 

[28] proposed a Mesh-Adaptive Direct Search algorithm 

to find locally optimal trajectories for a rotorcraft, 

considering a realistic noise footprint. Additionally, 

multiple surrogate models are defined based on problem 

knowledge, including those relying on the noise model 

and neural network methods. A large number of local 

minima characterizes the problem. 

     Among the references related to noise reduction, these 

studies have not thoroughly addressed the issue of 

determining an optimal trajectory that avoids collisions 

with obstacles. Furthermore, in papers focusing on this 

problem, the computational challenges associated with 

training reinforcement learning (RL), especially when 

performed online, are time-consuming and involve 

significant calculation difficulties. Moreover, many of the 

papers mentioned above only exhibit local minimum and 

do not fully address enhancing the noise estimation 

mechanism, which can be achieved by incorporating 

additional microphones.  

     In this study, we focus on small-sized UAVs, such as 

quadrotors, designed for applications like package 

delivery while addressing the impact of noise and 

obstacles in finding the optimal path. To enhance the 

accuracy of environmental data collection, including 

details such as noise and obstacles, the quadrotor's 

missions are conducted in close proximity to microphones 

(observers). Unlike the approach used in reference [28], 

both vertical and horizontal microphones are employed to 

improve the environmental modeling, thereby enhancing 

path-planning accuracy. A key challenge in noise 

reduction is accurately estimating the observed noise 

level. To address this, we propose a three-step process: 

First, the Rapidly Exploring Random Tree (RRT) 

algorithm generates random paths and identifies feasible 

waypoints. Second, a flight simulator is developed to 

determine the quadrotor’s position and attitude. Finally, 

the noise perceived by the observer is estimated using the 

Gutin equation, where the observers are assumed to be 

human. To estimate obstacles, environmental data is 

generated using sensor-based data maps, which are then 

refined through optimization with the Octomap 3D 

optimizer. The Q-learning algorithm uses the combined 

noise and obstacle estimation data as the reward function. 

The policy derived from this algorithm is then used to 

compute the quadrotor’s optimal path, balancing noise 

reduction and obstacle avoidance. A trade-off between 

noise and obstacles is considered when calculating the 

shortest path, as minimizing noise may require a longer 

route to reduce the sound perceived by the observer. 

Therefore, a parameter reflecting the relative importance 

of noise in the calculations is introduced, allowing the 

path to be adjusted for different scenarios based on the 

significance of noise. 

Moreover, the results are expanded by developing a new 

Q-value function that shapes a 2D surface. This approach 

allows the derivation of optimal features required for path 

planning using the surface, eliminating the need for 

recalculations. As a result, the path-finding problem in a 

3D state is simplified into a 2D problem. Since the data 

can be obtained from the pre-calculated 2D surface, 

online path planning can handle unpredictable changes in 

the environment, such as static or dynamic obstacles, with 

significantly reduced computational effort. This 

effectively reduces the computational complexity needed 

to derive the new policy, making it feasible to implement 

on smaller commercial UAVs without the need for 

powerful processors. 

The main contributions of this paper are summarized as 

follows:  

1) A unique reinforcement learning method based on Q-

learning is introduced, combining dual rewards to balance 

noise reduction and obstacle avoidance. This dual-reward 

system, along with a noise-weight parameter, allows for 

an effective trade-off between minimizing noise and 

ensuring obstacle avoidance, which is particularly 

relevant for operations in noise-sensitive urban 

environments. 2) This approach uses a novel 2D Q-value 

function to create a simplified surface while preserving 

the essential features of the path. This solution reduces 

computational demands, making it ideal for urban 

delivery quadrotors with limited onboard hardware and 

software. 3) The application of reinforcement learning, 

especially Q-learning, to path planning with a focus on 

noise reduction is a relatively unexplored area, 

particularly in urban settings where quadrotors are used 

for delivery. 4) Additional innovations include vertical 
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and horizontal noise observers that capture precise 

environmental data and enable dynamic adjustments in 

noisy, obstacle-dense environments. This ensures the 

algorithm remains accurate and responsive to real-time 

obstacles or noise sources changes. 

    The remainder of the paper is organized as follows: 

Section 2 proposes the main procedure of this paper. The 

environment's modeling is explained in Section 3. Section 

4 describes the waypoints generating process using the 

RRT algorithm. The steps for noise estimation and 

calculation of the perceived noise by the observers are 

explained in Section 5. Section 6 proposes the optimizer 

procedure containing the reward function, value table, and 

policy. The simulator block is described in Section 7. The 

effectiveness of the proposed method is evaluated using a 

numerical example in Section 8. Finally, the paper is 

concluded in Section 9. 

 

2. The low-noise quadrotor trajectory problem  

     The block diagram illustrating the entire procedure is 

shown in Fig. 1.  

 

 
Fig. 1.  Block diagram of the overall procedure 

 

Environmental features, which influence both the path 

and the behavior of the quadrotor, are derived from the 

map database block. Control signals are generated based 

on reference paths from the path planning block, which 

affect the quadrotor’s position and attitude through 

propeller speed commands. The quadrotor's position, 

attitude, and propeller speeds are then used to estimate 

and calculate the perceived noise. Additionally, the value 

functions, part of the optimizer, are computed using data 

from the reward functions, considering the estimated 

noise and obstacles. With this value function data and the 

reward-punishment strategy, the policy determines an 

optimal path that minimizes perceived noise and avoids 

obstacles. The main algorithm for this work is provided in 

Algorithm 1, which will be further explained in the 

following sections. 

 

Algorithm 1 

Inputs 

The sensitive and populated places, the altitude (𝑧), the 

velocity of the quadrotor while landing (𝑣), and the 

quadrotor's landing position ( 𝑥𝑔, 𝑦𝑔 , 𝑧𝑔 ) are used as 

inputs.  

Envrionment modelling (section 3) 

Map data based on the 3D scanner. 

The 3D scanner's data is converted to Octomap. 

The free environment using Octomap is derived. 

Waypoint generation (section 4) 

The starting points (𝑥 and 𝑦) are selected randomly for 

different altitudes. 

Using the RRT algorithm, the waypoints are calculated 

between random starting points and the destination.  

Smooth and feasible waypoints are derived based on 

the quadrotor's position. 

Estimation of the perceived noise (section 5) 

Based on the mapping, an observer is set for each 5𝑚2 

of the environment. 

Based on the quadrotor's position, the distance between 

the quadrotor and the observer (𝑟) is calculated. 

The sound pressure level (SPL) is obtained using the 

Gutin equation (Eq. (1) in section 5). 

The perceived noise (𝐿) is calculated for each observer 

at each waypoint (Eq. (5) in section 5).   

Optimizer (section 6) 

Space Segmentation 

Divide the 3D space into smaller segments. 

Calculation of the reward functions (section 6.1) 

The noise reward function (𝑅𝑁𝑜𝑖𝑠𝑒) is obtained (Eq. (6) 

in section 6.1). 

The obstacle reward function (𝑅𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 ) is obtained 

(Eq. (7) in section 6.1). 

Multiplying 𝐾 as the noise importance factor, the total 

reward function (𝑅𝑇𝑜𝑡𝑎𝑙)is obtained (Eq. (8) in section 

6.1). 

The reward values are assigned to different segments 

as initial value functions. 

Value Table Formation (section 6.2)  

The final value functions are calculated and assigned to 

space segments through an iterative process, and the 

value table is formed (Eq. (11) in section 6.2). 

2D Surface Extraction 

Derive a 2D surface by selecting the highest values in 

each value table column based on the proposed Q-value 

matrix (Eq. (13) in section 6.2). 

Policy (section 6.3) 

The optimal policy will be obtained based on the 

calculated value functions. 

Path generation using offline policy (Sub-section 

6.3.1) 

Process the positions of all waypoints on the obtained 

2D surface. 

Determine the orientations based on the neighboring 

waypoints with higher values. 

Save all orientations in a policy matrix (Eq. (14) in 

section 6.3.1). 

For each position of the quadrotor, the movement 

direction is called from the above matrix, and the 

optimal path of the quadrotor is formed towards the 

destination point. 

Path generation using online policy (Sub-section 

6.3.2)  

Store 2D surface data on the quadrotor. 

Compare the real-time position of the quadrotor with 

the stored 2D surface data. 

https://doi.org/10.48308/ijrtei.2024.237164.1059
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Neighboring waypoints with the highest values are 

selected and commanded as the next quadrotor’s 

position, and thus, the path is generated online.  

Simulator (section 7) 

The generated path is converted to roll, pitch, yaw, and 

thrust, and the data is sent to the controller.  

The position and attitude, as well as the propeller's 

velocity, are derived as simulator outputs.  

 

3. Environment's obstacles modelling 

     In this section, we describe the method used to model 

the environment. The environmental data primarily 

originates from sensor-generated data maps, which are 

then refined through an optimization procedure. A 

powerful optimization tool, the Octomap 3D optimizer 

[29], enhances the environmental model by providing 

greater detail and improved resolution. The optimizer uses 

point cloud data as inputs. Based on these inputs, the 

environment is divided into small squares, which are 

further subdivided to generate more detailed information. 

This process categorizes the entire environment into two 

parts: free spaces and obstacles. The environmental model 

used in this study, along with the division between free 

space and obstacles, is shown in Fig. 2. The figure on the 

left is generated from the data map, while the figure on 

the right represents the environment transformed into 

Octomap, which is used as the obstacle model in 

reinforcement learning (RL). 

 
(a) 

 
(b) 

Fig. 2.  The cloud points (a) and the obtained 

environment model based on the cloud points (b) 

4. Waypoint Generation 

     This section generates feasible paths, including 

different waypoints, in the free space using the RRT 

algorithm. Each waypoint is then assigned a value 

through reward and value functions, as detailed in the 

following sections, and the final optimal path is 

determined based on these values. 

 

   Using the RRT algorithm [30], an initial node 𝑥𝑖𝑛𝑖𝑡  with 

uniform distribution is randomly selected. If the chosen 

node belongs to the obstacles, another node 𝑥𝑛𝑒𝑤  is 

selected; otherwise, a path 𝐸𝑖 between the node and the 

destination node 𝑥𝑔𝑜𝑎𝑙  is shaped if the node belongs to 

free space. Doing so for 𝑁 iterations, different candidate 

paths toward the destination point are obtained. These 

paths are then used as set points for a waypoint generator 

to improve their feasibility and smoothness. This is 

essential, as the flight mode necessitates paths that the 

quadrotor can navigate accurately, even around curves. In 

Fig.3, all random paths found by the RRT algorithm from 

any arbitrary starting point toward the target position are 

shown.  
 

 

 

 
Fig. 3. Random paths found by the RRT algorithm 

5. Noise estimation and the perceived noise model 

     Generally, the quadrotor is the main source of noise, 

and two main procedures are used to reduce the noise 

levels perceived by the microphones (observers): 

1-Taking distance from the observer: as long as the noise 

source has a longer distance from the observers, the heard 

noise by the observers is less severe [27].  

2-Noise abatement procedures: by reducing the engine's 

RPM, the propellers' RPM is also decreased, which lowers 

the noise [31].  

     To achieve this, it is essential to estimate the perceived 

noise by the observers. A modified version of the Gutin 

pressure equation is used to calculate the perceived noise 

level at different waypoints. At each waypoint, 

microphones are arranged both horizontally and vertically 

(Fig. 4). A vertical microphone is assumed to be present 

for each section of the environment and on the buildings 
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since there exist auditor. Based on their relative distance 

from the quadrotor, the perceived noise is then calculated. 

 
Fig. 4. The relative position of the quadrotor with 

respect to the array of microphones at different 

waypoints 

Fig.5 shows the overall propeller geometry used in the 

Gutin model. This model is used as a basis for deriving 

the perceived sound by the observers.   

 
Fig. 5. Gutin model propeller geometry 

The sound metric, which is the Sound Pressure Level 

(SPL) calculated by the engineer form of the Gutin 

equation, is defined as follows [32]:  

𝑃𝑟𝑚𝑠 =
𝑃𝑑𝑖𝑠𝑐

2√2

𝑅𝑡

𝑟
𝑀𝑡(

𝑀

𝑀𝑒
2

− 𝑐𝑜𝑠𝜗)𝑞𝑛𝐽𝑞𝑛(𝑞𝑛𝑀𝑒𝑠𝑖𝑛𝜗), (1) 

where 𝑅𝑡 is the tip radius of the propeller, 𝑟 is the distance 

between the center of the propeller and the observer, 𝑀 is 

the Mach number of the vehicle, 𝑀𝑡 is the Mach number 

of the propeller, 𝑀𝑒 is the Mach number of the effective 

propeller radius (usually considered as ((0.7) − (0.8)𝑅𝑡), 

𝐽𝑞𝑛 is the  ,𝑞 is the harmonic order, 𝑛 is the number of 

the propeller blades, and the propeller disc pressure is 

𝑃𝑑𝑖𝑠𝑐 = 𝑇(𝜋𝑅𝑡
2)−1.  In (1), 𝜗 is the directivity angle which 

can be calculated as follows:  

𝜗 = 𝑎𝑟𝑐𝑜𝑠
𝑣𝑎𝑟𝑜/𝑎

|𝑣𝑎|. | 𝑟𝑜/𝑎|
 , (2) 

where 𝑣𝑎 is the propeller velocity in revolution per minute. 

The relative position of the observer to the quadrotor is 

obtained as follows [32]: 

𝑟𝑜 = 𝑟𝑎 + 𝑟𝑜/𝑎, (3) 

in which 𝑟𝑜  is the position of the observer, 𝑟𝑎  is the 

position of the aircraft and their difference is 𝑟𝑜/𝑎, hence: 

𝑟𝑜/𝑎 = 𝑟𝑎 − 𝑟𝑜 . (4) 

The distance between the observer and the noise source is 

determined by calculating the norm. Since the acoustic 

sources are considered incoherent and the quadrotor is 

equipped with four motors, each driving a propeller, an 

additional term is included to account for the extra 

propellers. Therefore, the sound perceived by each 

microphone (observer) is estimated as follows: 

𝐿 = 20𝑙𝑜𝑔10 (
𝑃𝑟𝑚𝑠

𝑃0

) + 4𝑙𝑜𝑔10(𝑁𝑝). (5) 

where 𝑁𝑝 is the number of propellers on the quadrotor and 

𝑃0 is the atmosphere pressure. In this work, the sum of 

perceived noise from 1000 observers are  

6. Optimizer: Q-learning 

     The Q-learning algorithm is applied as the optimizer. 

The proposed method uses Q-learning with a value-table, 

where each cell represents a location in the environment, 

influenced by obstacles (e.g., buildings) and noise sources. 

Since urban obstacles are static, values can be pre-mapped 

and assigned. The table is mapped to a 2D surface and 

imported into the quadrotor’s system. Noise observers, 

fixed in place, have constant values on the map. With 

these pre-mapped factors, the quadrotor (as the RL agent) 

learns the optimal path, balancing noise reduction and 

obstacle avoidance. The stages of RL implementation are 

as follows: First, the environment data is collected, 

including both obstacles and noise sources. Then, random 

obstacle-free paths are generated from the start point to 

the goal using the RRT algorithm. Noise data is created 

for these obstacle-free paths using MATLAB. Next, the 

map and noise data are imported to define the 

environment for the RL agent. The reward function is 

specified by assigning values to obstacles, free spaces, 

and noise. The coefficient K is introduced to define the 

relative importance of noise versus obstacles in the 

calculations. The value function is then created, assigning 

values to all points in the space using RL, even for areas 

that do not have direct data. Finally, the optimal policy is 

derived, and the environment map is constructed based on 

the learned value function to guide the quadrotor’s path 

planning. In the remainder of this section, the reward 

function and the procedure of obtaining policy based on 

the value table are further indicated. 

 

6.1. Reward function  

     The reward function is the sum of the estimated noise 

and obstacle rewards. The noise reward is calculated 

using the following equation: 

𝑅𝑁𝑜𝑖𝑠𝑒 = ∑ 𝐿

𝑛0

1

. 𝑇. 𝑆. 𝑃. 𝑁𝑝. (6) 

where 𝑛0  is the number of observers, 𝐿  is the sound 

perceived by each observer obtained from (5), and 𝑇 is the 

reward or punishment value assigned for the percentage 

of annoyance derived from Fig.6. 𝑆 is the sensitivity of 
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the observers’ position and 𝑃 is the observers’ population, 

where the values are assigned from Table.1. 

 
Fig. 6. The highly annoyed (HA) values based on day 

and night sound levels [33] 

Table. 1. Assigned numbers for 𝑆 and 𝑃 

𝑷 Small 

Population =1 

Medium 

Population=3 

Large 

Population=7 

𝑺 Working 

place=1 

Residential 

areas=3 

Hospital=7 

 

The obstacles reward is calculated according to the 

following equation: 

𝑅𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 = {
𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠       − 100 
𝐹𝑟𝑒𝑒𝑠𝑝𝑎𝑐𝑒      − 1     
𝐺𝑜𝑎𝑙                        500

. (7) 

Fig.7 shows the initial values of the reward function. The 

blue regions are obtained from sensors indicating 

obstacles, and the red regions denote the values for the 

paths generated by the RRT.  

 
Fig. 7. Calculated reward functions for the noise and 

obstacles 

Considering the noise estimation strategies mentioned 

earlier, such as adjusting the distance from observers and 

reducing propeller RPM, it is important to note that the 

resulting path may not always align with the goal of 

optimal path planning in certain scenarios. Due to this 

negative effect, a trade-off between the noise and obstacle 

rewards is needed. Therefore, using a weighting 

parameter 𝐾 to apply the importance of the noise effect 

compared with the obstacle effect, the total reward is 

obtained as follows: 

𝑅𝑇 = 𝑅𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 + 𝐾𝑅𝑁𝑜𝑖𝑠𝑒
 (8) 

Therefore, the reward values for all segments will be 

updated according to equation (8) through the learning 

process, subsequently serving as the initial values for the 

value function.  

 

6.2. Value table  

      The Q-learning algorithm is a reinforcement learning 

method used for policy determination based on the value 

function. To find the optimal path for the quadrotor, it is 

important to distinguish between fixed and movable 

obstacles. In this study, obstacles are initially fixed during 

the offline learning phase. The results are then extended 

to develop an online path-planning policy that accounts 

for movable obstacles. Since this work also considers the 

impact of noise and aims to find the optimal path that 

minimizes the quadrotor’s noise while avoiding obstacles, 

both noise and obstacle data are incorporated into the 

value function as rewards. The values for obstacles in the 

value table are initially assigned the same, as are the 

values for microphones and their neighbouring areas. The 

value function is defined as follows [34]: 

𝑉(𝑠) = max (𝑅𝑇(𝑠, 𝑎) + ∑ 𝑉(𝑠′𝑠′ )), (9) 

where 𝑉(𝑠) is the current value, 𝑅𝑇(𝑠, 𝑎) is the reward 

value obtained from (8), which is considered as initial 

variables of the value function, 𝑠  is the states which are 

the quadrotor’s position and engine’s speed, 𝑎 is the taken 

action, 𝑠′ is the previous states and 𝑉(𝑠′) is the previous 

values. Moreover, to include the action's role in the value 

function (9), the Q-value, which relies on the previous 

values, is formulated as follows:  

𝑉(𝑠) = 𝑅𝑇(𝑠, 𝑎) + 𝛾 ∑ (𝑇(𝑠, 𝑎, 𝑠′). 𝑉(𝑠′)).
𝑠′

 (10) 

Where 0 < 𝛾 ≤ 1 is the forgetting rate and 𝑇(𝑠, 𝑎, 𝑠′) is 

the temporary difference. Replacing 𝑉(𝑠′)  with 

𝑚𝑎𝑥𝑄(𝑠′, 𝑎′)  which is the maximum value of the 

previous Q-values, the following equation is derived: 

𝑄(𝑠, 𝑎)

= 𝑅𝑇(𝑠, 𝑎) + 𝛾 ∑ (𝑇(𝑠, 𝑎, 𝑠′). 𝑚𝑎𝑥𝑄(𝑠′, 𝑎′)).
𝑠′

 
(11) 

Based on the equation above, Q-learning uses an off-

policy approach, separating the acting policy from the 

learning policy. Referring to the Q-value equation in (11), 

the value for each segment of the environment is 

computed. This learning process continues for 1500 

iterations to build a 3D table of values. Figure 8 shows the 

final value functions obtained for different space 

segments. Small circles represent lower values, while 

larger circles correspond to higher values. The purple 
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areas highlight dominant obstacles, and the pink regions 

indicate noise dominance. 

 

 
Fig. 8. Value function after 1500 iterations   

 

The Q-value equation derived in (11) resulted in a 3D 

value table, which can increase the complexity of 

determining the policy. Therefore, the following 

algorithm is used to simplify the Q-value function: 

𝑓𝑟𝑜𝑚  𝑥 = 0 𝑡𝑜 𝐼𝑥  

   𝑓𝑟𝑜𝑚  𝑦 = 0 𝑡𝑜 𝐼𝑦 

      𝑄𝑛𝑒𝑤(𝑥, 𝑦) = 𝑀𝑎𝑥𝑧(𝑄(𝑥, 𝑦, 𝑧)),   𝑧 = 0 𝑡𝑜 𝐼𝑧 

   𝑒𝑛𝑑 

𝑒𝑛𝑑 

 

(12) 

Therefore, by only selecting the highest value of the z-axis 

data in the value table, it transforms into a two-

dimensional Q-value matrix as follows that collects Q-

values in different positions: 

 

𝑄𝑛𝑒𝑤 = (

𝑄𝑛𝑒𝑤(0,0) ⋯ 𝑄𝑛𝑒𝑤(0, 𝐼𝑦)

⋮ ⋱ ⋮
𝑄𝑛𝑒𝑤(𝐼𝑥 , 0) ⋯ 𝑄𝑛𝑒𝑤(𝐼𝑥 , 𝐼𝑦)

). 
(13) 

 

The above relationship is represented as a 2D surface, 

with the Q-learning policy using only the values assigned 

to this surface to generate the path, effectively reducing 

computational complexity. The 2D surface derived from 

Equation (13) is shown in Figure 9. 

 
Fig. 9. The 2D surface that is derived to obtain the 

policy 

 

 

 

6.3. Policy 

      In this section, policies are derived for offline and 

online path planning scenarios, which are detailed in the 

following subsections. 

 

6.3.1 Offline Path Planning Policy 

     In offline path planning, the quadrotor's starting points 

are not predefined during the learning stage. Instead, all 

potential paths to the designated destination are generated 

during the training phase on the 2D surface to derive the 

offline policy. For each point on the 2D surface, the 

neighboring waypoint with the highest value function is 

selected. According to Table 2, one of the directions is 

then assigned to the current location to guide the 

quadrotor toward the chosen waypoint. The quadrotor's 

path is constructed by following waypoints with higher 

value functions, leading toward the target point. Based on 

this strategy, a policy matrix is stored according to (14), 

and a direction 𝑜𝑖 , i = {1, … ,9} is assigned to each 𝑥 and 

𝑦 component on the proposed surface: 

 

Table. 2. Assigned values to save the quadrotor's 

orientations 
Orientations 

𝒐𝒊 
        goal 

Assigned 

values 
1 2 3 4 5 6 7 8 9 

 

𝜋 = (

𝑜𝑖(0,0) ⋯ 𝑜𝑖(0, 𝐼𝑦)

⋮ ⋱ ⋮
𝑜𝑖(𝐼𝑥, 0) ⋯ 𝑜𝑖(𝐼𝑥, 𝐼𝑦)

) ,    𝑖 = {1, … ,9} (14) 

 

In each position of the quadrotor, the movement direction 

is called from the above matrix, and therefore, the 

quadrotor is optimally directed towards the destination. 

Fig. 10 shows the stored orientations for different points 

on the 2D surface. 

 

 
Fig. 10. The extracted policy from any starting point 

toward the destination     
 

6.3.2 Online Path Planning Policy 

     The 2D surface data is initially stored on the quadrotor 

in online path planning. The quadrotor's real-time position 

is compared with the stored 2D surface data during the 

path planning process. At each position, unlike the offline 

policy, the online system dynamically selects the nearby 

waypoints with the highest value function. Subsequently, 

the path with selected waypoints is commanded in real-

time; the policy will be executed without needing to 

precompute the paths. This facilitates the potential for 

real-time calculations, which is especially advantageous 
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in situations with mobile obstacles. Furthermore, global 

path planning becomes feasible as the policy-finding 

process occurs online, in contrast to the offline policy, 

which restricts path calculations to local scopes. 

The proposed algorithm can be used for online 

applications by combining the pre-mapped method with 

occasional real-time updates from LiDAR. This hybrid 

approach enables the quadrotor to adapt to environmental 

changes, making it more suitable for dynamic urban 

environments. 

Remark 1. The parameter 𝐾, introduced in equation (8), 

enables a flexible trade-off between obstacle avoidance 

and noise reduction, adjustable based on quadrotor size 

and environmental complexity. As the environment or 

quadrotor size increases, the emphasis shifts from noise 

reduction to obstacle avoidance. This ensures that 

obstacle avoidance takes priority in challenging 

conditions, while noise reduction is prioritized in simpler 

environments with smaller quadrotors.  

Assumption 1. Obstacles are not large enough to block 

all possible path to the goal. This assumption guarantees 

that the proposed path-planning algorithm remains 

feasible. 

 

7. Flight simulator  

       In this step, the quadrotor dynamics model and flight 

control system collaborate to guide the quadrotor along a 

predefined path. The flight control system adjusts the 

quadrotor's position based on this path, utilizing a path-

following controller that translates reference position data 

into essential control parameters: roll, pitch, yaw, and 

thrust. The controller block integrates feedback on the 

quadrotor’s real-time position with the input data to 

calculate the appropriate propeller speeds, subsequently 

applied to the dynamic model. The quadrotor dynamics 

model and the backstepping control approach employed 

here are referenced in [35]. 

 

8. Simulation results  

     In this section, the developed method is evaluated 

using a numerical example of a quadrotor. The parameters 

used in this work are gathered in the table. 3. as it is shown: 

 

Table. 3. Parameters used in the simulation section 

Parameters values 

Quadrotor’s mass 𝑚 = 320𝑔 

Distance between two 

engines 
𝑙 = 10 𝑖𝑛𝑐ℎ 

Maximum velocity of 

engines  
𝑣𝑎𝑚𝑎𝑥 = 10 𝑖𝑛𝑐ℎ 

Forgetting factor 𝛾 = 1 

Quadrotor’s propellers  𝑁𝑝 = 2 

Atmospheric pressure  𝑃0 = 100000 𝑃𝑎 

     

      The required CPU time for the proposed algorithm, 

the initial path planning using the RRT algorithm, took 

approximately 1835 seconds (around 30 minutes) and was 

performed only once during the setup phase. The noise 

estimation process required approximately 180,000 

seconds (around 2 days), and the reinforcement learning 

(RL) policy computation took about 120,000 seconds 

(approximately 1.5 days), both of which were also 

executed only once during the training phase. Once the 

policy function was computed, the path planning for any 

selected starting point within the mapped environment 

could be executed in approximately 2.2 seconds, enabling 

rapid path generation during deployment. These 

computations were carried out on a system with an Intel 

Pentium G4400 @ 3.30GHz CPU and 20 GB of RAM. 

The proposed approach minimizes online computational 

demands by conducting computationally intensive 

processes offline, such as noise estimation and policy 

training, ensuring practicality for real-time applications 

on quadrotors with limited processing capabilities. 

    Figure 11 illustrates the optimal path for the quadrotor, 

calculated based on specific assigned values and a 

randomly chosen starting point. In the figure, the purple 

areas represent the highest values, constituting the derived 

policy. With this information and the selection of a 

starting point, an optimal path for the quadrotor is 

determined. 

 

 
Fig. 11. The optimal path derived for the quadrotor  

 

      In Fig.12, the optimal path and the noise footprint for 

the quadrotor are shown based on the offline policy. Areas 

marked in yellow indicate the highest noise levels, while 

noise decreases as the color shifts to blue and purple. 

Figure 12 shows the path from a single random starting 

point. For a more comprehensive analysis, Figure 13 

illustrates the policy generated for 200 different local 

starting points. This figure displays the optimal paths for 

each starting point, considering obstacle avoidance and 

noise reduction principles. 
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Fig. 12. The noise footprint derived for the quadrotor 

based on an optimal path 

 
Fig. 13. The optimal paths for 200 local starting points 

from the above point of view  

 

Fig. 14. The quadrotor's position according to the 

derived desired path 

     Figure 14 illustrates the quadrotor's position as it 

follows the path derived from the policy, showing 

successful adherence to the desired trajectory.  

      Figure 15 compares paths generated with and without 

the 2D surface for a mobile obstacle (the red sphere). 

Using the 2D surface effectively reduces the number of 

generated paths. In this scenario, the online path planning 

integrates pre-computed conditions and new dynamic 

conditions, such as moving obstacles. This approach 

already saves the previous conditions on a 2D surface. 

This surface does not store the orientation but represents 

the value function of the space. When dynamic conditions 

like moving obstacles arise, their effect is directly 

considered in the value function, and an updated value 

function is computed. Subsequently, the policy function 

and the revised path are derived. The pre-computed 

surface significantly enhances computational efficiency. 

Instead of recalculating the entire 3D space during online 

updates, only the 2D surface needs to be recomputed. This 

will eventually reduce computational complexity while 

ensuring accurate path planning. 

 

 
(a) 

 
(b) 

Fig. 15.  The path comparison with the 2D surface (b) 

and without it (a) for a mobile obstacle 
 

     A new scenario is considered for a quadrotor to 

compare the effect of noise on path deviation based on the 

online policy. In this study, the punishments are fixed, as 

they influence the distance between the obtained path and 
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the obstacles. Based on (8), the effect of the noise 

importance for 𝐾 = 0, 1, 2, 4 is evaluated, and the path is 

calculated for each value, as shown in Fig.16. As shown 

in Figure 16, all the buildings, which are made up of 

smaller sections, are both obstacle sections and 

microphone sections. The reason for the color variation is 

the sound intensity detected in each section. 

     According to the above figure, when 𝐾 = 0,  the 

problem only considers obstacle avoidance and noise 

effects are not part of the optimal path calculation. This 

approach ensures obstacle avoidance but may cause the 

optimal path to pass close to obstacles. It is important to 

note that the noise feature is calculated specifically within 

the free space of the environment. Therefore, increasing 

the importance of noise directs the path to the free space 

to reduce the noise but makes it longer. Therefore, a 

compromise must be made to choose the appropriate 

value of  𝐾. 

 

 

Fig. 16. Paths obtained based on changing the noise 

importance factor 

 

The results comparing each derived path for different 

values of 𝐾 are shown in Table.3. 

 

Table. 4. Results comparison based on different values 

for 𝐾 

Noise importance 

value 
𝑲 = 𝟏 𝑲 = 𝟏 𝑲 = 𝟐 𝑲 = 𝟒 

Points making the 

waypoints 
25 29 34 37 

Obstacle avoidance 

value 
458 406 385 365 

Number of 

engaged observers 

over 40 dB 

953 897 865 864 

Noise value over 

60 dB 
443 658 783 1254 

Final noise value 0 658 1634 5373 

     

From Table 4, it's evident that as the value of 𝐾 increases 

and in relation to the number of primary waypoints 

(column 2), the resulting paths tend to be longer. 

Conclusively, fixing the time intervals for each waypoint 

increases the time required to traverse the paths. This is 

evident in the total obstacle avoidance values (column 3), 

indicating an increase in path length. Within the 

reinforcement learning (RL) framework, this results in 

harsher penalties for the agent due to the defined death 

penalty. 

     In urban areas, typical background noise levels are 

around 40 dB, with sounds above 60 dB being more 

noticeable to observers. As shown in the table above, 

increasing the 𝐾  factor reduces the number of engaged 

observers (column 4), guiding the quadrotor’s path toward 

a lower-noise trajectory. The noise values in Table 4 

(column 5) demonstrate that, although the number of 

engaged observers decreases, the quadrotor receives a 

higher reward for noise reduction, indicating a decrease in 

the average noise perceived by observers. However, as 

shown in the final noise value column, increasing 𝐾 

linearly does not produce a proportional change in the 

final noise estimation. This is because, with each iteration, 

the perceived noise decreases for the observers, increasing 

the estimated noise value. 

      Fig.17 shows the paths derived from different values 

of 𝐾 based on the time taken to reach the destination. As 

illustrated in this figure, the more the value of 𝐾 increases, 

the path will become more sensitive to the noise; however, 

the CPU time will increase due to calculation difficulties. 

This also confirms the increase in transportation time.   

 

 
Fig. 17. A comparison of the paths obtained based on 

different noise importance 

 

9. Conclusion   

     This paper proposes a Q-learning algorithm for a 

quadrotor to find an optimal path that avoids obstacles and 

minimizes noise, using reinforcement learning. 

Environmental features, including noise and obstacles, are 

estimated separately using MATLAB's Gutin equation 

and Octomap. The estimated noise and obstacle data serve 

as rewards for the value function, which is ultimately used 

to derive the optimal policy. This policy allows the 

determination of the best path, balancing noise reduction 

and obstacle avoidance. The value function table is also 

used to construct a 2D surface, simplifying calculations 

by identifying the highest value, as demonstrated in this 

study. In conclusion, the quadrotor's position results 
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confirm the successful application of the proposed 

algorithm, which effectively finds a path that allows the 

quadrotor to navigate near obstacles while minimizing 

noise. Future work may involve integrating additional 

noise reduction methods based on dynamic structures or 

exploring quadrotor velocity optimization.  
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