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Autonomous vehicles use various sensors such as radar, LiDAR  and GPS, along 

with computer vision algorithms, to understand their environment.These sensors 

gather data that needs to be analyzed for obstacle detection and 

navigation. However, achieving accurate object recognition is difficult due to 

challenges in data processing, high computational needs, and memory 

requirements   . This study proposes a modified structure  of MobileNet , called 

MobileNet-Att, which includes two attention mechanisms: Parallel Convolution 

Block Attention Module (PCBAM) and  Squeeze-and-Excitation (SE) blocks. 

PCBAM captures multi-scale spatial features using parallel convolutions, enabling 

the model to focus on varying levels of spatial information. This design improves 

object classification and efficiency without increasing computational costs 

by effectively capturing richer contextual information. In the next step, SE blocks 

readjust the importance of each channel by "squeezing" global information 

through average pooling, and then "exciting" the channels based on this global 

context. This enables the network to emphasize essential features while 

minimizing the influence of irrelevant data.  In essence,  MobileNet-Att, with its 

attention mechanisms and modifications, offers a balanced approach between 

performance and computational loading  to provide a valuable solution for object 

classification in autonomous vehicles.  Experiments show that MobileNet-Att 

outperforms earlier models in accuracy and parameter efficiency on the CIFAR-

10 and Caltech-101 datasets. 
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1. Introduction 

Image analysis and classification play a crucial role 

in the field of computer vision. In this regard, extensive 

research has been done on extracting image features and 

developing classification algorithms for data 

classification purposes. 

Convolutional neural networks are widely used in a 

variety of industrial technologies such as autonomous 

vehicles [1].  These networks have shown significant 

success in tasks like image classification [2], object 

detection [3] and semantic segmentation [4]. Important 

models like AlexNet, VGG16 and MobileNet enable 

autonomous systems to better understand and process 

visual information. Each of these models has made image 
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classification more accurate, efficient, and faster. These 

features are essential for the proper functioning of self-

driving vehicles. 

AlexNet was a major advancement in image 

classification and won the ImageNet competition. It 

demonstrated the power of deep learning by using GPUs 

for efficient training. The use of ReLU activation, 

dropout for regularization and deep layer architectures 

helped overcome the limitations of previous models. 

However, AlexNet consists of nearly 60 million 

parameters, which makes it computationally intensive 

and This high cost limits its practicality for resource-

constrained systems [5]. 
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VGG16, introduced in 2014, advanced deep learning 

with 3x3 convolutional filters for detail capture. Its high 

accuracy comes with over 138 million parameters, 

making it computationally heavy and less suited for real-

time applications such as those found in autonomous 

vehicles [6]. The high capacity required by these 

networks poses considerable challenges, including 

memory and computational limitations; however, 

accelerating the networks for implementing deep 

convolutional neural network models is essential. This 

compressing helps us to reduce parameters and 

effectively address the computational challenges by 

simplifying the computational load. 

In this regard, Denil et al. demonstrated significant 

reduction in the parameters of  deep Convolutional 

Neural Networks, with minimal impact on classification 

accuracy.They enabled researchers to successfully prune 

unnecessary connections and parameters in pre-trained 

networks [7]. 

MobileNet, developed in 2017, made significant 

advancements in improving CNN systems and 

introduced "DWS" , which stands for depthwise 

separable convolutions, as an effective method to reduce 

computational load while maintaining high accuracy. 

MobileNet is an efficient solution for autonomous 

vehicle applications where quick and precise decision-

making are essential [8]. 

 Similarly, ShuffleNet [9] improved pointwise 

channel grouping to create a structure that reduces both 

the number of parameters and computational cost while 

maintaining network accuracy. It seems that in the 

structure of these networks, there are still some other 

low-impact parameters that, by identifying and removing 

them,we could make the network more efficient. 

     As mentioned in previous sections, architectures 

such as AlexNet and VGG16 may not provide the high 

speed required for processing visual data in systems like 

autonomous vehicles due to their intensive structure and 

large number of parameters. 

 In recent years, advancements in Convolutional 

Neural Networks  and their integration with attention 

mechanisms have improved image classification and 

object detection tasks. One of the most important 

innovations in improving CNN performance is the 

introduction of attention mechanisms that allow models 

to focus on the most relevant parts of the input [10]. 

The Convolutional Block Attention Module, 

introduced in 2018, successfully integrates attention 

mechanisms into CNNs by combining spatial and 

channel attention. CBAM helps models concentrate on 

relevant objects like pedestrians or vehicles while 

ignoring unnecessary details  and enhancing accuracy in 

object detection and classification for self-driving cars 

[11]. 

On the other hand, SqueezeNet, developed in 2016, 

is an efficient CNN designed for resource-limited 

systems. This network achieves high performance with 

fewer parameters by utilizing "fire modules" that 

combine 1x1 and 3x3 convolutions. This approach 

reduces computational load while maintaining accuracy, 
making SqueezeNet suitable for real-time processing in 

autonomous vehicles where computational power and 

memory are crucial [12]. 

     To illustrate that a large number of parameters 

does not necessarily indicate accuracy in an architecture, 

comparing the two architectures below is useful.  

VGG16, with approximately 138 million parameters, 

achieves high accuracy on the ImageNet dataset but 

requires substantial computational resources. On the 

other hand, MobileNet, with around 4.2 million 

parameters, is lighter and more efficient. Despite its 

smaller size, MobileNet's accuracy is only 1% lower than 

VGG16 on ImageNet [13]. These features makes 

MobileNet a good choice for applications where 

computational efficiency and accuracy are important. 

To improve the performance of the MobileNet model, 

it is possible to reduce the number of parameters and 

computational complexity while increasing accuracy to 

achieve optimal processing. To achieve this  goal, we 

first need to briefly review the main architecture of 

MobileNet. We can increase the network's efficiency by 

identifying and removing low-impact parameters along 

with employing other technical approaches. 
 

2. MobileNet Architecture 

The MobileNet architecture was created by Google 

researchers for efficient use on resource-constrained 

systems. One of the main challenges with CNN is their 

extensive computational requirements, making them 

unsuitable for deployment on such systems. As a result, 

the researchers employed a different type of convolution 

layer known as "Depthwise Separable Convolution" that 

is more effective than standard convolution because it 

divides the operation into two steps: depthwise 

convolution and pointwise convolution. In standard 

convolution, a K × K filter is simultaneously applied 

across all input channels. This process extracts spatial 

features and combines information from different 

channels at the same time which is computationally 

expensive. 

On the other hand,  DWS initially uses depthwise 

convolution with a K × K filter for each channel 

independently to reduce computations. Then, pointwise 

convolution uses a 1× 1 filter to mix information across 

channels to focuse on channel-wise interaction.  This 

separation reduces the computational cost from K × K × 

Cin × Cout (standard) to K × K × Cin + Cin × Cout. 

Similarly, the number of parameters decreases 

significantly.  As we know in the MobileNet structure, k 

and C respectively represent the size of the depthwise 

convolutional kernel and the number of input or output 

channels[14]. 

 DWS has comparable performance to standard 

convolution with fewer resources. Its efficiency makes it 

ideal architectures with fewer parameters like MobileNet. 

Figure 1 illustrates the MobileNet architecture that 

showes the overall concept of a DWS block. This specific 

network is built with 13 basic blocks and contains a total 

of 4.2 million parameters [15]. 
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Fig. 1. Structure of MobileNet [15]. 

 

3. Attention Mechanisms1 
Since attention mechanisms play a crucial role in this 

article, it is essential to briefly review them and their 

impact on model precision and efficiency. These 

mechanisms that were inspired by human cognition, 

enable models to focus on unique features in the dataset 

and prioritize important information while ignoring 

unnecessary details. The remarkable aspect of attention 

mechanisms lies in their ability to enhance model 

accuracy by concentrating on critical data and reducing 

redundancy [16].  Mathematically, this is achieved by 

assigning weights αij  to elements of the input x{i} 

calculated as: 

𝛼𝑖𝑗 =
exp⁡(𝑒𝑖𝑗)

∑ exp⁡(𝑒𝑖𝑘)
𝑛
𝑘=1

                                         (1) 

 

Attention mechanisms enhance the interpretability of 

models by identifying important parts of the data for 

predictions. For example, spatial attention focuses on 

specific regions in an image, while channel attention 

improves the representation of features on the feature 

map, as demonstrated in their respective processes. They 

increase model precision by enabling the model to 

concentrate on the most relevant parts of the input, which 

directly enhances its ability to make accurate predictions. 

For example in self attention mechanism, this is achieved 

through the attention formula: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉             (2) 

 

Here,  Q,K,V represent different aspects of the input, 

and the dot product between Q and K computes a 

similarity score that determines how much attention each 

input should receive. The softmax function ensures that 

the attention model focuses more on the most relevant 

parts of the data.  This focused attention on key 

information helps the model produce more accurate 

outputs, especially in tasks like image recognition, where 

relationships between elements are critical [17]. 

Attention mechanisms increase precision by directly 

connecting important parts of the input to the output. In 

contrast to models like RNNs, which often  lose 

information over long sequences, attention  ensures that 

the model remains consciously aware of the relevant 

context in the entire input. This helps the model make 

more accurate predictions. In the following sections, it 

 
1 AM 
2 SE 

will be discussed in more detail how some special 

attention mechanisms contribute to model precision or 

efficiency. 

In this article, we have enhanced accuracy in our 

proposed architecture by modifying and integrating the 

Squeeze-and-Excitation block with the Convolution 

Block Attention Module. To effectively describe our 

proposed model, it is essential to first provide a 

comprehensive overview of these attention mechanisms. 

 

3.1. Squeeze-and-Excitation Block 

CNNs utilize the convolution operator as their 

fundamental building block. This allows networks to 

extract significant features through channel information 

and spatial coherence in each layer. Previous research has 

focused on the spatial aspect of these connections to 

enhance the representational capacity of CNNs. Their 

focus has been on improving the spatial encoding 

qualities in the feature hierarchy. These studies suggested 

a new architectural module, called Squeeze and 

Excitation2. 

The SE block operates in two stages. Initially, a 

Squeeze operation is executed, which involves 

performing global average pooling on each channel, 

thereby condensing its spatial dimensions into a singular 

scalar value. This is represented as: 

𝑧𝑐 = 𝐹𝑠𝑞(𝑈𝑐) =
1

𝐻𝑊
∑ ∑ 𝑈𝑐(𝑖, 𝑗)

𝑊
𝑗−1

𝐻
𝑖−1                  (3) 

 

In the subsequent step, an Excitation operation is 

performed on the squeeze values 𝑧𝑐 . These values are 

processed through fully connected layers and 

subsequently subjected to a sigmoid activation function, 

resulting in the generation of a channel-wise attention 

map. 

𝑠 = 𝜎(𝑊2𝛿(𝑊1𝑧 + 𝑏1) + 𝑏2)                                (4) 

 

This attention map S is used to adjust the feature map 

by changing the importance of each channel. This 

process helps the model focus on the important features. 

By learning which channels are more important, the SE 

block ensures that only the most relevant features are 

passed to deeper layers [18]. 

 
Fig. 2. Squeeze_and_Exciataion Block [18] 

 

3.2. Convolution Block Attention Module3 

The Convolution Block Attention Module is a simple 

and efficient attention mechanism that generates 

attention maps in both channel and spatial dimensions. 

These maps are multiplied with input features to 

dynamically adjust them. This module can be seamlessly 

incorporated into any CNN architecture to improve 

performance without adding significant computational 

burdens. Next, we will discuss the crucial role of spatial 

and channel attention in improving model performance. 

3 CBAM 
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3.2.1. Spatial Attention1 

The Spatial Attention Module focuses on identifying 

where important informations are located. This module 

reduce irrelevant data reaching later layer by 

concentrating on specific regions of the feature map that 

are most relevant . This is achieved by applying max 

pooling and average pooling along the channel axis to 

extract spatial descriptors that highlight both dominant 

features and overall structure. These descriptors are then 

combined and processed to create a spatial attention map. 

By utilizing spatial attention, as illustrated in Figure 3, 

we can enhance the features of maps that improve the 

quality of inputs for advanced visual perception layers. 

This enhancement helps to boost the overall performance 

of the model [19]. 

 

 
Fig. 3. Diagram of spatial attention module [19] 

 

3.2.2. Channel Attention 

The Channel Attention Module in CBAM refines 

feature maps by focusing on meaningful channels. Each 

channel of the input feature map  F ∈ ℝC×H×Wis  
considered as a feature detector. To determine channel 

attention, spatial features are combined using both 

average pooling and max pooling and produce two 

descriptors 𝐹𝑎𝑣𝑔⁡
𝑐 𝑎𝑛𝑑⁡𝐹𝑚𝑎𝑥

𝑐   . These descriptors represent 

global statistics and prominent features, respectively. 

Both descriptors pass through a shared Multi-Layer 

Perceptron with a single hidden layer.                                                  

     The MLP has weights 𝑊0𝑎𝑛𝑑𝑊1 and its hidden layer 

size is reduced by a factor 𝑟⁡for efficiency. The outputs 

of the MLP are summed element-wise and transferred to 

a sigmoid function to produce the channel attention 

mapMc ∈ ℝ
C×1×1 The formula is: 

Mc(F) = σ (MLP(Favg
c
)+MLP(Fmax

c
)) =

⁡σ(W1 (W0(Favg
c
))+W1 (W0(Fmax

c
)))                           (5) 

 
Finally, the input feature map F is refined by multiplying 

it element-wise with the broadcasted channel attention 

map: 
F′ = Mc(F)⊗ F                                                                 (6) 

 
As you observed, channel attention creates a 

significant improvement in feature representation and 

effectively eliminates irrelevant data by disregarding 

unimportant information [20]. 

 
3.2.3. The Reason for using both structure 

To achieve better results, it is recommended to use a 

combination of both types of attention.  CBAM consists 

of channel and spatial attention modules, compute 

complementary attention, focusing on ‘what’ and ‘where’ 

respectively. by enhancing key features, channel 

 
1 SA 

attention helps the model prioritize the most informative 

features in each layer. On the other hand, spatial attention 

emphasizes relevant information within the feature map 

that is critical for the learning process.  Considering this, 

the two modules can be placed in a parallel or sequential 

manner but it has been proven that the sequential 

arrangement provides better results compared to the 

parallel arrangement. For the sequential process, the 

experimental results demonstrate that the channel-first 

order performs slightly better than the spatial-first order. 

The combination of these two mechanisms maximizes 

the model's capacity to capture high-level and detailed 

features, leading to more robust predictions. The 

structure of CBAM is illustrated in Figure 4. 
 

 
Fig. 4. CBAM structure[20] 

 

4. Proposed network 

 MobileNet network generally consists of 28 layers. 
These layers have different impacts on the network's 

computational load. Previous researches have 

significantly contributed to remove less important layers 

in the MobileNet's architecture. However, there are still 

layers in this network that considerably increase the 

number of parameters while having minimal impact on 

the overall accuracy of MobileNet. 

In the process of improving deep neural network 

models, the main goal is to reduce computational 

complexity and increase efficiency, especially when 

models need to be deployed on devices with limited 

resources. In this context, removing unnecessary layers 

can help improve the model. In the proposed MobileNet 

architecture, which consists of 28 layers, 10 layers have 

been selected to be removed from the original structure, 

as shown in the table I. 
The selection of these layers for removal involved 

sensitivity analysis, layer impact evaluation and pruning 

methods. In this process, each layer was individually 

removed and the model’s performance was evaluated 

after each removal. The results showed that eliminating 

5 depthwise convolution layers and 5 pointwise 

convolution layers did not have a significant impact on 

the model's accuracy beacuase these layers extracted 

similar features in specific stages of the network that had 

limited result on the final performance. 

Another reason for rejecting these layers was the 

analysis of computational costs and memory. while 

depthwise convolution and pointwise convolution layers 

are efficient in reducing the number of parameters, they 

can incur high computational costs in certain parts of the 

network, without providing a significant impact on the 

model's accuracy. Especially in networks with many 
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layers, adding them increases computation and memory 

usage. 

Finally, to ensure reliability, pruning method 

(removing  weights and layers), was used to 

automatically identify and remove layers that had less 

effect on feature learning and predictions. Results 

confirmed that the 5 depthwise convolution layers and 5 

pointwise convolution layers extracted repetitive features 

and had a high degree of similarity with other layers in 

the network. These layers, located in the middle stages of 

the network, were responsible for independently 

processing and combining features, and based on the 

empirical analysis, their removal did not significantly 

affect the model’s accuracy. 

It is important to emphasize that eliminating the 

layers must be done carefully to preserve the stability of 

the model. The initial layers, responsible for extracting 

fundamental features such as edges and simple shapes, 

are essential for the model’s performance and must 

remain. Removing these layers would be detrimental. It 

is necessary to note that the removed layers, did not have 

these key roles and were suitable candidates for 

removing. 

As a result, by deleting 10 layers, including 5 depthwise 

and 5 pointwise convolution layers, using methods like 

sensitivity analysis and pruning, the number of 

parameters was dramatically reduced. However, the 

network experienced only a minimal decrease in 

accuracy. 

To address this issue, we took two important steps. In the 

first step, we enhanced the network structure by 

combining activation functions like ReLU and H-Swish. 

H-Swish as a non-linear activation function that is 

introduced in [21], can significantly improve neural 

network accuracy when used instead of ReLU. 
 

Table I. Structure of MobileNet layers. 

 

 
1 SA 

The cost of applying H-Swish decreases as we move 

deeper into the network, because the activation memory 

of each layer is typically halved with each reduction in 

resolution. Therefore, we find the best results of this 

method are achieved only when it is used in deep layers. 

The goal of H-Swish is to improve network performance, 

and it can be calculated using the following formula. 

h-swish = X
𝑅𝑒𝑙𝑢⁡(𝑥+3)

6
 (7) 

 

The attention that is used in orginial structure of 

MobileNet is a classic example of channel attention, 

which primarily determines the importance of each 

feature channel through compression and activation. This 

helps the network emphasize some features and 

exclusively concentrates on the correlation between 

feature maps across various channels and ignores spatial 

information or pixel details that are very important for 

image classification. 

In fact, CBAM is a combination of channel-wise 

attention and spatial attention1. This means that initially 

the feature map of the image is weighted by channel 

attention and then weighted by spatial attention to obtain 

the output feature map. This is a typical sequential 

structure. In this process, the spatial attention mechanism 

takes its input from the channel attention, which can 

interfere with spatial attention performance and thus 

affect the overall efficiency of the attention mechanism. 

To address these issues and improve the accuracy of 

the architecture , we make modifications to the 

Convolution Block Attention Module. Ultimately, to 

utilize both channel and spatial information, we employ 

a Mixed-Domain Attention Mechanism to achieve more 

effective improvements in the proposed network. 

The proposed structure combines the Parallel 

Convolution Block Attention Module with the Squeeze-

and-Excitation mechanism to enhance network accuracy 

and improve feature representation .   This design 

overcomes the limitations of serial mechanisms like 

CBAM by processing attention channel and spatially in 

parallel. the parallel approach improves accuracy as it 

allows the network to extract simultaneously important 

features of both channel and spatial  without  

interference. This simultaneous processing helps the 

network capture complementary information from both 

domains. As a result, the network can generate more 

precise and effective feature representations. 

Another factor that helps improve accuracy is 

preserving original information. Skip connections, which 

act as a direct path, transfer the main input features to the 

output.  This ensures that essential information is not lost 

during the attention process and the basic features stay 

preserved. This helps maintain the final network's 

accuracy. Furthermore, the skip connection improves 

gradient flow during backpropagation. This reduces 

issues like such as vanishing gradients and allows better 

learning in deeper layers. 

Simultaneous processing in this structure ensures that 

both channel and spatial attention are applied at the same 

time to the feature map. Channel attention, by adjusting 

the importance of channels, allows the network to focus 

Type / Stride Filter Shape Input Size 

Conv / s2 3 x 3 x 3 x 32 224 x 224 x 3 

Conv dw / s1 3 x 3 x 32 dw 112 x 112 x 32 

Conv / s1 1 x 1 x 32 x 64 112 x 112 x 32 

Conv dw / s2 3 x 3 x 64 dw 112 x 112 x 64 

Conv / s1 1 x 1 x 64 x 128 56 x 56 x 64 

Conv dw / s1 3 x 3 x 128 dw 56 x 56 x 128 

Conv / s1 1 x 1 x 128 x 128 56 x 56 x 128 

Conv dw / s2 3 x 3 x 128 dw 56 x 56 x 128 

Conv / s1 1 x 1 x 128 x 256 56 x 56 x 128 

Conv dw / s1 3 x 3 x 256 dw 28 x 28 x 256 

Conv / s1 1 x 1 x 256 x 256 28 x 28 x 256 

Conv dw / s2 3 x 3 x 256 dw 28 x 28 x 256 

Conv / s1 1 x 1 x 256 x 512 28 x 28 x 256 

5 ×  Conv dw / s1 3 x 3 x 512 dw 14 x 14 x 512 

5 ×  Conv / s1 1 x 1 x 512 x 512 14 x 14 x 512 

Conv dw / s2 3 x 3 x 512 dw 14 x 14 x 512 

Conv / s1 1 x 1 x 512 x 1024 14 x 14 x 512 

Conv dw / s2 3 x 3 x 1024 dw 7 x 7 x 1024 

Conv / s1 1 x 1 x 1024 x 1024 7 x 7 x 1024 

Avg Pool / s1 Pool 7 x 7 7 x 7 x 1024 

FC / s1 1024 x 1000 7 x 7 x 1024 

Softmax / s1 Classifier 7 x 7 x 1024 
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on important features, while spatial attention emphasizes 

critical pixels or regions of the feature map. This 

comprehensive improvement process enables the 

network to better identify detailed patterns and improve 

image classification performance. 

On the other hand , SENet initially operates by 

applying global average pooling to compress the spatial 

dimensions of the feature map. This action creates a 

compact model that captures the global distribution of 

features in each channel. 

This representation then passed through two fully 

connected layers for dimensionality reduction to identify 

critical inter-channel relationships and another layer for 

restoring the original dimensions while generating 

channel-specific scaling factors. These scaling factors are 

applied through the feature map multiplication. This 

process selectively emphasizes the most informative 

channels and reduces the impact of less relevant ones. 

SENet,by enhancing the channel features, ensures 

that the network can extract the most meaningful 

information from the feature maps generated by 

PCBAM. 

The integration of PCBAM and SENet, along with 

their implementation at the end of layers, significantly 

enhances their effectiveness. At this stage, the feature 

maps contain semantically rich semantic information that 

is essential for accurate classification.   SENet refines this 

information while complementing PCBAM's 

simultaneous processing of channel and spatial attention. 

Together, these mechanisms enable the network to more 

effectively identify meaningful patterns. 

In this structure, the input feature map concurrently 

passes through both channel attention and spatial 

attention processes to obtain the relevant weights. These 

weights are then directly applied to produce the output 

feature map. This process is mathematically expressed as 

follows. 

 

𝐹𝐻 =𝑀𝑐(𝐹) ∗ ⁡𝑀𝑠(𝐹) ∗ ⁡⁡𝐹⁡ 

 

(8) 

    As shown in Figure 5, we  have improved network 

accuracy by using both Parallel Convolution Block 

Attention Module and Squeeze-and-Excitation 

simultaneously at the end of the network. While this 

approach adds a few parameters to our proposed 

architecture, results show that accuracy is increased. 

Fig. 5. Our Proposed Attention Mechanism 

 

The final network structure, as outlined in Table II, 

includes the combined SENet and PCBAM attention 

mechanisms, the activation functions and the removed 

layers.  Key innovation of this paper is the combination 

and modification of various methods to improve object 

classification accuracy. this approach also aims to reduce 

the number of parameters and computational complexity. 

 

Table II. Final structure of proposed network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type / Stride Filter Shape Input Size Activation Function 

Conv / s2 3 x 3 x 3 x 32 224 x 224 x 3 Relu 

Conv dw / s1 3 x 3 x 32 dw 112 x 112 x 32 Relu 

Conv / s1 1 x 1 x 32 x 64 112 x 112 x 32 Relu 

Conv dw / s2 3 x 3 x 64 dw 112 x 112 x 64 Relu 

Conv / s1 1 x 1 x 64 x 128 56 x 56 x 64 Relu 

Conv dw / s1 3 x 3 x 128 dw 56 x 56 x 128 Relu 

Conv / s1 1 x 1 x 128 x 128 56 x 56 x 128 Relu 

Conv dw / s2 3 x 3 x 128 dw 56 x 56 x 128 Relu 

Conv / s1 1 x 1 x 128 x 256 56 x 56 x 128 Relu 

Conv dw / s1 3 x 3 x 256 dw 28 x 28 x 256 Relu 

Conv / s1 1 x 1 x 256 x 256 28 x 28 x 256 h-swish 

Conv dw / s2 3 x 3 x 256 dw 28 x 28 x 256 h-swish 

Conv / s1 1 x 1 x 256 x 512 28 x 28 x 256 h-swish 

Conv dw / s2 3 x 3 x 512 dw 14 x 14 x 512 h-swish 

Conv / s1 1 x 1 x 512 x 1024 14 x 14 x 512 h-swish 

Conv dw / s2 3 x 3 x 1024 dw 7 x 7 x 1024 h-swish 

Conv / s1 1 x 1 x 1024 x 1024 7 x 7 x 1024 h-swish 

 

(our proposed Attention Mechanism) 
 

Parallel Convolution Block Attention Module as the First Attention Mechanism 

Squeeze-and-Excitation Block is  combined with Previous as the Second Attention Mechanism 

Avg Pool / s1 Pool 7 x 7 7 x 7 x 1024 

FC / s1 1024 x 1000 7 x 7 x 1024 

Softmax / s1 Classifier 7 x 7 x 1000 

        

        

   

                   

 

 

 
 

 

 

 

 

 ×  ×   ×  ×  
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5. Results and discussion 
CIFAR-10 is suitable for testing how well a model 

handles 7 low-resolution images in a controlled set of 

object classes. It's especially useful for benchmarking 

models that need to work with smaller, faster images, 

often used in mobile or embedded systems.  Caltech-101 

is more challenging and allows testing of the model’s 

ability to classify a larger variety of categories with 

higher-resolution images. His feature makes it more 

suitable for real-world applications, such as autonomous 

vehicles or complex image recognition tasks.  By 

evaluating the model on both datasets, we  can 

demonstrate that the model has the ability to generalize 

across different levels of complexity, from simple tasks 

(CIFAR-10) to more challenging ones (Caltech-101). 

To validate our model, we trained it using both Caltech-

101 and CIFAR-10 datasets. The Caltech-101 dataset 

contains 9,145 images distributed across 101 classes. 

Each class contains between 40 to 800 images. The 

images in the dataset were labeled initially and then 

randomly shuffled for our experiments. From these, 1,500 

images were randomly selected for testing, while the 

remaining images were used for training purposes. 

On the other hand, the CIFAR-10 dataset consists of 

60,000 color images with dimensions of 32x32 pixels. 

These images are categorized into 10 classes, with each 

class containing 6,000 images. This dataset is divided into 

50,000 training images and 10,000 test images.The 

CIFAR-10 dataset is divided into five training sets and 

one test set, each containing 10,000 images, with 1,000 

images randomly selected per class in the test set.The 

training sets consist of the remaining images, selected 

randomly. As a result, some categories may have more 

images than others within the training sets. Overall, the 

training sets collectively contain 5,000 images from each 

class. 

Initially, we trained the proposed model on the CIFAR-10 

dataset for 50 epochs. Figures 6a and 6b present loss and 

accuracy curves, respectively. As illustrated in the figure 

below, the loss curve gradually decreases, while the 

accuracy curve reaches its maximum value in the final 

epochs. 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. (a) loss, and (b) accuracy of the train model vs. valid 

model on CIFAR-10 dataset. 

 

According to table III it can be seen that in CIFAR-10 

dataset, over 92% of the cases that our proposed model 

predicted as positive were actually positive And has 

correctly identified over 86% of the true positive cases. 

The balance between precision and recall, which is 

represented by the F1_score, was also 89%. 

 

 
Table III. Inforrmation of models on CIFAR-10 dataset. 

Network precision Recall F1-score 

Proposed 

Model 

0.923 0.864 0.889 

 

Confusion matrix as a valuable tool for evaluating the 

performance of classification models , provides detailed 

insights into the model's ability to correctly and 

incorrectly identify different classes. As shown in 

CIFAR-10 confusion matrix, the proposed model 

correctly classified 908 instances of the car class and 

accurately identified 705 instances of the dog class, which 

can be considered as potential obstacles for the cars. 

 
Fig. 7. Confusion matrix of the network on the CIFAR-10 

dataset. 
 

In the next stage, we trained our proposed network on 

Caltech-101 dataset, which contains more classes and 

higher-quality images. The aim of this work was to 

demonstrate the efficiency of the proposed model on 

another benchmark dataset. As illustrated in the figure 8a 

and 8b, the performance of the trained network on the 

Caltech_101 dataset is also remarkable. In fact, as the 
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number of training epochs increased, the model achieved 

higher accuracy and lower loss. 

As seen in Table VI The proposed model achieves a 

good balance between Precision and Recall based on the 

F1-score. Moreover, the results obtained in terms of 

accuracy and recall on the CALTECH-101 dataset 

demonstrate the effectiveness of our proposed model. 

The results of the confusion matrix in figure 9 indicate 

that the proposed model has performed  well overall on 

the Caltech 101 dataset and has been able to accurately 

classify the categories. The high number of True Positives 

and True Negatives prove that the model has mostly made 

correct predictions.  In contrast, low number of False 

Positives and False Negatives suggest that the model has 

not made many mistakes in classifying certain categories. 

 

 
Fig. 8. (a) loss, and (b) accuracy of the train model vs. valid 

model on Caltech-101 dataset. 

 
 

Table VI. Information of models on Caltech-101 dataset. 

Network Precision Recall F1-score 

Proposed 

Model 

0.893 0.847 0.834 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9. Confusion matrix of the network on the Caltech-101 

dataset (10 classes of 101 classes). 
 

Therefore, based on these results, it can be said that the 

model has performed well overall. 

In this article, we analyzed the performance of various 

networks on two datasets and compared them with our 

proposed network. Additionally, a closer look at the 

number of parameters in other networks shows how 

efficient our proposed network is in reducing 

computational and graphical processing load. The 

comparison table (V) clearly shows that despite having 

fewer parameters, our proposed network achieves 

significantly higher accuracy compared to its counterparts. 

 

Table V. Comparison of different information of 

different types of networks: (network’s volume and 

parameters number are estimated on 1000 classes). 
 Network 

accuracy 

on 
Caltech-

101 

dataset 

Network 

accuracy 

on 
CIFAR-

10 

dataset 

Network 

size 

(MB) 

Number of 

network 

parameter 

mobileNet 76.73% 84.2% 16.27 4.264.808 
shuffleNet 77.3% 83.4% 9.50 2.491.504 

GoogleNet 91.05% 92.9% 26.70 6.998.552 

mobileNetV2 78.2 % 87.3% 13.50 3.489.552 
VGG16 89.37% 91.4% 527.79 138.3 57.54 

Proposed 
Model 

90.07% 92.6% 12.25 3.211.245 

 

 
Our proposed network outperforms others on both datasets in 

terms of accuracy and number of used parameters, as shown in 

Table V. 

To introduce an application of this network in 

autonomous vehicles, we considered multi-object images 

containing humans and vehicles. The objects in These 

Images were localized by the pre-trained Single-Shot 

MultiBox Detector MobileNet then the single objects 

were given to our proposed network for classification. It 

is important to note that the SSD MobileNet was only 

used in the final section for lockalization in order to 

obtaine graphic outputs for for presenting a practical 

application. As shown in Figure. 10. 
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Fig. 10. Classifying of Localized Objects by Proposed 

Network. 

 

6. Conclusion 

The results of this study show that the proposed 

MobileNet-Att model, utilizing modified SE (Squeeze-

and-Excitation) and PCBAM (Parallel Convolution Block 

Attention Module), has achieved considerable 

improvements in accuracy and computational efficiency. 

These improvements include reducing the number of 

layers and parameters in the network, along with the use 

of effective activation functions and parallel architectures 

in attention mechanisms. 

          Evaluation of the model on the CIFAR-10 and 

Caltech-101 datasets revealed that MobileNet-Att 

provides remarkable accuracy in object classification 

while reducing computational load.These results confirm 

that the proposed model is not only suitable for 

autonomous systems but can also contribute to enhance 

the safety and efficiency of these systems. This research 

presents a practical approach to improving the 

performance and efficiency of convolutional neural 

networks in real-world applications. 

It should be noted that our proposed model may have 

lower performance with complex datasets, such as multi-

modal data. To address this issue, AutoML or dynamic 

attention mechanisms can enhance  accuracy. Using 

multi-head attention mechanisms, which allow the model 

to simultaneously focus on multiple features or different 

parts of the data, can also improve efficiency. 

      In addition to reducing dependence on labeled data, 

unsupervised or semi-supervised learning methods can be 

used.  In real-time applications, computational complexity 

can be reduced by using model compression or distributed 

parallel processing. Furthermore, combining models with 

recurrent neural networks or using multimodal networks 

can enhance performance in sequential or time-series 

data. 
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