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Autonomous vehicles use various sensors such as radar, LiDAR and GPS, along 
with computer vision algorithms, to understand their environment.These sensors 
gather data that needs to be analyzed for obstacle detection and 
navigation. However, achieving accurate object recognition is difficult due to 
challenges in data processing, high computational needs, and memory 
requirements  . This study proposes a modified structure  of MobileNet , called 
MobileNet-Att, which includes two attention mechanisms: Parallel Convolution 
Block Attention Module (PCBAM) and  Squeeze-and-Excitation (SE) blocks. 
PCBAM captures multi-scale spatial features using parallel convolutions, enabling 
the model to focus on varying levels of spatial information. This design improves 
object classification and efficiency without increasing computational costs 
by effectively capturing richer contextual information. In the next step, SE blocks 
readjust the importance of each channel by "squeezing" global information 
through average pooling, and then "exciting" the channels based on this global 
context. This enables the network to emphasize essential features while 
minimizing the influence of irrelevant data.  In essence,  MobileNet-Att, with its 
attention mechanisms and modifications, offers a balanced approach between 
performance and computational loading to provide a valuable solution for object 
classification in autonomous vehicles.  Experiments show that MobileNet-Att 
outperforms earlier models in accuracy and parameter efficiency on the CIFAR-
10 and Caltech-101 datasets. 
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1. Introduction 
Image analysis and classification play a crucial role 

in the field of computer vision. In this regard, extensive 
research has been done on extracting image features and 
developing classification algorithms for data 
classification purposes. 

Convolutional neural networks are widely used in a 
variety of industrial technologies such as autonomous 
vehicles [1].  These networks have shown significant 
success in tasks like image classification [2], object 
detection [3] and semantic segmentation [4]. Important 
models like AlexNet, VGG16 and MobileNet enable 
autonomous systems to better understand and process 
visual information. Each of these models has made image 
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classification more accurate, efficient, and faster. These 
features are essential for the proper functioning of self-
driving vehicles. 

AlexNet was a major advancement in image 
classification and won the ImageNet competition. It 
demonstrated the power of deep learning by using GPUs 
for efficient training. The use of ReLU activation, 
dropout for regularization and deep layer architectures 
helped overcome the limitations of previous models. 
However, AlexNet consists of nearly 60 million 
parameters, which makes it computationally intensive 
and This high cost limits its practicality for resource-
constrained systems [5]. 
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VGG16, introduced in 2014, advanced deep learning 
with 3x3 convolutional filters for detail capture. Its high 
accuracy comes with over 138 million parameters, 
making it computationally heavy and less suited for real-
time applications such as those found in autonomous 
vehicles [6]. The high capacity required by these 
networks poses considerable challenges, including 
memory and computational limitations; however, 
accelerating the networks for implementing deep 
convolutional neural network models is essential. This 
compressing helps us to reduce parameters and 
effectively address the computational challenges by 
simplifying the computational load. 

In this regard, Denil et al. demonstrated significant 
reduction in the parameters of  deep Convolutional 
Neural Networks, with minimal impact on classification 
accuracy.They enabled researchers to successfully prune 
unnecessary connections and parameters in pre-trained 
networks [7]. 

MobileNet, developed in 2017, made significant 
advancements in improving CNN systems and 
introduced "DWS" , which stands for depthwise 
separable convolutions, as an effective method to reduce 
computational load while maintaining high accuracy. 
MobileNet is an efficient solution for autonomous 
vehicle applications where quick and precise decision-
making are essential [8]. 

 Similarly, ShuffleNet [9] improved pointwise 
channel grouping to create a structure that reduces both 
the number of parameters and computational cost while 
maintaining network accuracy. It seems that in the 
structure of these networks, there are still some other 
low-impact parameters that, by identifying and removing 
them,we could make the network more efficient. 

    As mentioned in previous sections, architectures 
such as AlexNet and VGG16 may not provide the high 
speed required for processing visual data in systems like 
autonomous vehicles due to their intensive structure and 
large number of parameters. 

 In recent years, advancements in Convolutional 
Neural Networks  and their integration with attention 
mechanisms have improved image classification and 
object detection tasks. One of the most important 
innovations in improving CNN performance is the 
introduction of attention mechanisms that allow models 
to focus on the most relevant parts of the input [10]. 

The Convolutional Block Attention Module, 
introduced in 2018, successfully integrates attention 
mechanisms into CNNs by combining spatial and 
channel attention. CBAM helps models concentrate on 
relevant objects like pedestrians or vehicles while 
ignoring unnecessary details and enhancing accuracy in 
object detection and classification for self-driving cars 
[11]. 

On the other hand, SqueezeNet, developed in 2016, 
is an efficient CNN designed for resource-limited 
systems. This network achieves high performance with 
fewer parameters by utilizing "fire modules" that 
combine 1x1 and 3x3 convolutions. This approach 
reduces computational load while maintaining accuracy, 
making SqueezeNet suitable for real-time processing in 

autonomous vehicles where computational power and 
memory are crucial [12]. 

     To illustrate that a large number of parameters 
does not necessarily indicate accuracy in an architecture, 
comparing the two architectures below is useful.  
VGG16, with approximately 138 million parameters, 
achieves high accuracy on the ImageNet dataset but 
requires substantial computational resources. On the 
other hand, MobileNet, with around 4.2 million 
parameters, is lighter and more efficient. Despite its 
smaller size, MobileNet's accuracy is only 1% lower than 
VGG16 on ImageNet [13]. These features makes 
MobileNet a good choice for applications where 
computational efficiency and accuracy are important. 

To improve the performance of the MobileNet model, 
it is possible to reduce the number of parameters and 
computational complexity while increasing accuracy to 
achieve optimal processing. To achieve this  goal, we 
first need to briefly review the main architecture of 
MobileNet. We can increase the network's efficiency by 
identifying and removing low-impact parameters along 
with employing other technical approaches. 

 
2. MobileNet Architecture 

The MobileNet architecture was created by Google 
researchers for efficient use on resource-constrained 
systems. One of the main challenges with CNN is their 
extensive computational requirements, making them 
unsuitable for deployment on such systems. As a result, 
the researchers employed a different type of convolution 
layer known as "Depthwise Separable Convolution" that 
is more effective than standard convolution because it 
divides the operation into two steps: depthwise 
convolution and pointwise convolution. In standard 
convolution, a K × K filter is simultaneously applied 
across all input channels. This process extracts spatial 
features and combines information from different 
channels at the same time which is computationally 
expensive. 

On the other hand,  DWS initially uses depthwise 
convolution with a K × K filter for each channel 
independently to reduce computations. Then, pointwise 
convolution uses a 1× 1 filter to mix information across 
channels to focuse on channel-wise interaction.  This 
separation reduces the computational cost from K × K × 
Cin × Cout (standard) to K × K × Cin + Cin × Cout. 
Similarly, the number of parameters decreases 
significantly. As we know in the MobileNet structure, k 
and C respectively represent the size of the depthwise 
convolutional kernel and the number of input or output 
channels[14]. 

 DWS has comparable performance to standard 
convolution with fewer resources. Its efficiency makes it 
ideal architectures with fewer parameters like MobileNet. 
Figure 1 illustrates the MobileNet architecture that 
showes the overall concept of a DWS block. This specific 
network is built with 13 basic blocks and contains a total 
of 4.2 million parameters [15]. 
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Fig. 1. Structure of MobileNet [15]. 

 
3. Attention Mechanisms1 

Since attention mechanisms play a crucial role in this 
article, it is essential to briefly review them and their 
impact on model precision and efficiency. These 
mechanisms that were inspired by human cognition, 
enable models to focus on unique features in the dataset 
and prioritize important information while ignoring 
unnecessary details. The remarkable aspect of attention 
mechanisms lies in their ability to enhance model 
accuracy by concentrating on critical data and reducing 
redundancy [16].  Mathematically, this is achieved by 
assigning weights αij  to elements of the input x{i} 
calculated as: 

𝛼!" =
#$%	((!")

∑ #$%	((!#)$
#%&

                                         (1) 

 
Attention mechanisms enhance the interpretability of 

models by identifying important parts of the data for 
predictions. For example, spatial attention focuses on 
specific regions in an image, while channel attention 
improves the representation of features on the feature 
map, as demonstrated in their respective processes. They 
increase model precision by enabling the model to 
concentrate on the most relevant parts of the input, which 
directly enhances its ability to make accurate predictions. 
For example in self attention mechanism, this is achieved 
through the attention formula: 
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑡𝑚𝑎𝑥 3+,

'

√./
4 𝑉             (2) 

 
Here,  Q,K,V represent different aspects of the input, 

and the dot product between Q and K computes a 
similarity score that determines how much attention each 
input should receive. The softmax function ensures that 
the attention model focuses more on the most relevant 
parts of the data.  This focused attention on key 
information helps the model produce more accurate 
outputs, especially in tasks like image recognition, where 
relationships between elements are critical [17]. 

Attention mechanisms increase precision by directly 
connecting important parts of the input to the output. In 
contrast to models like RNNs, which often  lose 
information over long sequences, attention ensures that 
the model remains consciously aware of the relevant 
context in the entire input. This helps the model make 
more accurate predictions. In the following sections, it 
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will be discussed in more detail how some special 
attention mechanisms contribute to model precision or 
efficiency. 

In this article, we have enhanced accuracy in our 
proposed architecture by modifying and integrating the 
Squeeze-and-Excitation block with the Convolution 
Block Attention Module. To effectively describe our 
proposed model, it is essential to first provide a 
comprehensive overview of these attention mechanisms. 

 
3.1. Squeeze-and-Excitation Block 

CNNs utilize the convolution operator as their 
fundamental building block. This allows networks to 
extract significant features through channel information 
and spatial coherence in each layer. Previous research has 
focused on the spatial aspect of these connections to 
enhance the representational capacity of CNNs. Their 
focus has been on improving the spatial encoding 
qualities in the feature hierarchy. These studies suggested 
a new architectural module, called Squeeze and 
Excitation2. 

The SE block operates in two stages. Initially, a 
Squeeze operation is executed, which involves 
performing global average pooling on each channel, 
thereby condensing its spatial dimensions into a singular 
scalar value. This is represented as: 

𝑧0 = 𝐹12(𝑈0) =
3
45

∑ ∑ 𝑈0(𝑖, 𝑗)5
"63

4
!63                  (3) 

 
In the subsequent step, an Excitation operation is 

performed on the squeeze values 𝑧0 . These values are 
processed through fully connected layers and 
subsequently subjected to a sigmoid activation function, 
resulting in the generation of a channel-wise attention 
map. 

𝑠 = 𝜎(𝑊7𝛿(𝑊3𝑧 + 𝑏3) + 𝑏7)                                (4) 
 
This attention map S is used to adjust the feature map 

by changing the importance of each channel. This 
process helps the model focus on the important features. 
By learning which channels are more important, the SE 
block ensures that only the most relevant features are 
passed to deeper layers [18]. 

 
Fig. 2. Squeeze_and_Exciataion Block [18] 

 
3.2. Convolution Block Attention Module3 

The Convolution Block Attention Module is a simple 
and efficient attention mechanism that generates 
attention maps in both channel and spatial dimensions. 
These maps are multiplied with input features to 
dynamically adjust them. This module can be seamlessly 
incorporated into any CNN architecture to improve 
performance without adding significant computational 
burdens. Next, we will discuss the crucial role of spatial 
and channel attention in improving model performance. 

3 CBAM 
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3.2.1. Spatial Attention1 

The Spatial Attention Module focuses on identifying 
where important informations are located. This module 
reduce irrelevant data reaching later layer by 
concentrating on specific regions of the feature map that 
are most relevant . This is achieved by applying max 
pooling and average pooling along the channel axis to 
extract spatial descriptors that highlight both dominant 
features and overall structure. These descriptors are then 
combined and processed to create a spatial attention map. 
By utilizing spatial attention, as illustrated in Figure 3, 
we can enhance the features of maps that improve the 
quality of inputs for advanced visual perception layers. 
This enhancement helps to boost the overall performance 
of the model [19]. 
 

 
Fig. 3. Diagram of spatial attention module [19] 

 
3.2.2. Channel Attention 

The Channel Attention Module in CBAM refines 
feature maps by focusing on meaningful channels. Each 
channel of the input feature map  F ∈ ℝ8×:×;is  
considered as a feature detector. To determine channel 
attention, spatial features are combined using both 
average pooling and max pooling and produce two 
descriptors 𝐹<=>	0 𝑎𝑛𝑑	𝐹?<@0   . These descriptors represent 
global statistics and prominent features, respectively. 
Both descriptors pass through a shared Multi-Layer 
Perceptron with a single hidden layer.                                                  
    The MLP has weights 𝑊A𝑎𝑛𝑑𝑊3 and its hidden layer 
size is reduced by a factor 𝑟	for efficiency. The outputs 
of the MLP are summed element-wise and transferred to 
a sigmoid function to produce the channel attention 
mapMB ∈ ℝ8×3×3 The formula is: 
Mc(F) = σ #MLP$Favgc %+MLP$Fmaxc %& =
	σ(W1 #W0$Favgc %&+W1 #W0$Fmaxc %&)                           (5) 
 
Finally, the input feature map F is refined by multiplying 
it element-wise with the broadcasted channel attention 
map: 
F′ = Mc(F)⊗ F                                                                 (6) 
 

As you observed, channel attention creates a 
significant improvement in feature representation and 
effectively eliminates irrelevant data by disregarding 
unimportant information [20]. 
 
3.2.3. The Reason for using both structure 

To achieve better results, it is recommended to use a 
combination of both types of attention.  CBAM consists 
of channel and spatial attention modules, compute 
complementary attention, focusing on ‘what’ and ‘where’ 
respectively. by enhancing key features, channel 

 
1 SA 

attention helps the model prioritize the most informative 
features in each layer. On the other hand, spatial attention 
emphasizes relevant information within the feature map 
that is critical for the learning process.  Considering this, 
the two modules can be placed in a parallel or sequential 
manner but it has been proven that the sequential 
arrangement provides better results compared to the 
parallel arrangement. For the sequential process, the 
experimental results demonstrate that the channel-first 
order performs slightly better than the spatial-first order. 
The combination of these two mechanisms maximizes 
the model's capacity to capture high-level and detailed 
features, leading to more robust predictions. The 
structure of CBAM is illustrated in Figure 4. 
 

 
Fig. 4. CBAM structure[20] 

 
4. Proposed network 

 MobileNet network generally consists of 28 layers. 
These layers have different impacts on the network's 
computational load. Previous researches have 
significantly contributed to remove less important layers 
in the MobileNet's architecture. However, there are still 
layers in this network that considerably increase the 
number of parameters while having minimal impact on 
the overall accuracy of MobileNet. 

In the process of improving deep neural network 
models, the main goal is to reduce computational 
complexity and increase efficiency, especially when 
models need to be deployed on devices with limited 
resources. In this context, removing unnecessary layers 
can help improve the model. In the proposed MobileNet 
architecture, which consists of 28 layers, 10 layers have 
been selected to be removed from the original structure, 
as shown in the table I. 

The selection of these layers for removal involved 
sensitivity analysis, layer impact evaluation and pruning 
methods. In this process, each layer was individually 
removed and the model’s performance was evaluated 
after each removal. The results showed that eliminating 
5 depthwise convolution layers and 5 pointwise 
convolution layers did not have a significant impact on 
the model's accuracy beacuase these layers extracted 
similar features in specific stages of the network that had 
limited result on the final performance. 

Another reason for rejecting these layers was the 
analysis of computational costs and memory. while 
depthwise convolution and pointwise convolution layers 
are efficient in reducing the number of parameters, they 
can incur high computational costs in certain parts of the 
network, without providing a significant impact on the 
model's accuracy. Especially in networks with many 

Spa$al A(en$on Module

Spa$al A(en$onChannel-refined
feature

[Max Pool, Avg Pool]
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layers, adding them increases computation and memory 
usage. 

Finally, to ensure reliability, pruning method 
(removing  weights and layers), was used to 
automatically identify and remove layers that had less 
effect on feature learning and predictions. Results 
confirmed that the 5 depthwise convolution layers and 5 
pointwise convolution layers extracted repetitive features 
and had a high degree of similarity with other layers in 
the network. These layers, located in the middle stages of 
the network, were responsible for independently 
processing and combining features, and based on the 
empirical analysis, their removal did not significantly 
affect the model’s accuracy. 

It is important to emphasize that eliminating the 
layers must be done carefully to preserve the stability of 
the model. The initial layers, responsible for extracting 
fundamental features such as edges and simple shapes, 
are essential for the model’s performance and must 
remain. Removing these layers would be detrimental. It 
is necessary to note that the removed layers, did not have 
these key roles and were suitable candidates for 
removing. 
As a result, by deleting 10 layers, including 5 depthwise 
and 5 pointwise convolution layers, using methods like 
sensitivity analysis and pruning, the number of 
parameters was dramatically reduced. However, the 
network experienced only a minimal decrease in 
accuracy. 
To address this issue, we took two important steps. In the 
first step, we enhanced the network structure by 
combining activation functions like ReLU and H-Swish. 
H-Swish as a non-linear activation function that is 
introduced in [21], can significantly improve neural 
network accuracy when used instead of ReLU. 
 
Table I. Structure of MobileNet layers. 

 

 
1 SA 

The cost of applying H-Swish decreases as we move 
deeper into the network, because the activation memory 
of each layer is typically halved with each reduction in 
resolution. Therefore, we find the best results of this 
method are achieved only when it is used in deep layers. 
The goal of H-Swish is to improve network performance, 
and it can be calculated using the following formula. 
h-swish	=	XL(MN	(@OP)

Q
	 (7) 

 
The attention that is used in orginial structure of 
MobileNet is a classic example of channel attention, 
which primarily determines the importance of each 
feature channel through compression and activation. This 
helps the network emphasize some features and 
exclusively concentrates on the correlation between 
feature maps across various channels and ignores spatial 
information or pixel details that are very important for 
image classification. 
In fact, CBAM is a combination of channel-wise 
attention and spatial attention1. This means that initially 
the feature map of the image is weighted by channel 
attention and then weighted by spatial attention to obtain 
the output feature map. This is a typical sequential 
structure. In this process, the spatial attention mechanism 
takes its input from the channel attention, which can 
interfere with spatial attention performance and thus 
affect the overall efficiency of the attention mechanism. 

To address these issues and improve the accuracy of 
the architecture , we make modifications to the 
Convolution Block Attention Module. Ultimately, to 
utilize both channel and spatial information, we employ 
a Mixed-Domain Attention Mechanism to achieve more 
effective improvements in the proposed network. 

The proposed structure combines the Parallel 
Convolution Block Attention Module with the Squeeze-
and-Excitation mechanism to enhance network accuracy 
and improve feature representation .  This design 
overcomes the limitations of serial mechanisms like 
CBAM by processing attention channel and spatially in 
parallel. the parallel approach improves accuracy as it 
allows the network to extract simultaneously important 
features of both channel and spatial  without  
interference. This simultaneous processing helps the 
network capture complementary information from both 
domains. As a result, the network can generate more 
precise and effective feature representations. 

Another factor that helps improve accuracy is 
preserving original information. Skip connections, which 
act as a direct path, transfer the main input features to the 
output.  This ensures that essential information is not lost 
during the attention process and the basic features stay 
preserved. This helps maintain the final network's 
accuracy. Furthermore, the skip connection improves 
gradient flow during backpropagation. This reduces 
issues like such as vanishing gradients and allows better 
learning in deeper layers. 

Simultaneous processing in this structure ensures that 
both channel and spatial attention are applied at the same 
time to the feature map. Channel attention, by adjusting 
the importance of channels, allows the network to focus 

Type / Stride Filter Shape Input Size 
Conv / s2 3 x 3 x 3 x 32 224 x 224 x 3 

Conv dw / s1 3 x 3 x 32 dw 112 x 112 x 32 
Conv / s1 1 x 1 x 32 x 64 112 x 112 x 32 

Conv dw / s2 3 x 3 x 64 dw 112 x 112 x 64 
Conv / s1 1 x 1 x 64 x 128 56 x 56 x 64 

Conv dw / s1 3 x 3 x 128 dw 56 x 56 x 128 
Conv / s1 1 x 1 x 128 x 128 56 x 56 x 128 

Conv dw / s2 3 x 3 x 128 dw 56 x 56 x 128 
Conv / s1 1 x 1 x 128 x 256 56 x 56 x 128 

Conv dw / s1 3 x 3 x 256 dw 28 x 28 x 256 
Conv / s1 1 x 1 x 256 x 256 28 x 28 x 256 

Conv dw / s2 3 x 3 x 256 dw 28 x 28 x 256 
Conv / s1 1 x 1 x 256 x 512 28 x 28 x 256 

5 ×  Conv dw / s1 3 x 3 x 512 dw 14 x 14 x 512 
5 ×  Conv / s1 1 x 1 x 512 x 512 14 x 14 x 512 
Conv dw / s2 3 x 3 x 512 dw 14 x 14 x 512 

Conv / s1 1 x 1 x 512 x 1024 14 x 14 x 512 
Conv dw / s2 3 x 3 x 1024 dw 7 x 7 x 1024 

Conv / s1 1 x 1 x 1024 x 1024 7 x 7 x 1024 
Avg Pool / s1 Pool 7 x 7 7 x 7 x 1024 

FC / s1 1024 x 1000 7 x 7 x 1024 
Softmax / s1 Classifier 7 x 7 x 1024 
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on important features, while spatial attention emphasizes 
critical pixels or regions of the feature map. This 
comprehensive improvement process enables the 
network to better identify detailed patterns and improve 
image classification performance. 

On the other hand , SENet initially operates by 
applying global average pooling to compress the spatial 
dimensions of the feature map. This action creates a 
compact model that captures the global distribution of 
features in each channel. 

This representation then passed through two fully 
connected layers for dimensionality reduction to identify 
critical inter-channel relationships and another layer for 
restoring the original dimensions while generating 
channel-specific scaling factors. These scaling factors are 
applied through the feature map multiplication. This 
process selectively emphasizes the most informative 
channels and reduces the impact of less relevant ones. 

SENet,by enhancing the channel features, ensures 
that the network can extract the most meaningful 
information from the feature maps generated by 
PCBAM. 

The integration of PCBAM and SENet, along with 
their implementation at the end of layers, significantly 
enhances their effectiveness. At this stage, the feature 
maps contain semantically rich semantic information that 
is essential for accurate classification.  SENet refines this 
information while complementing PCBAM's 
simultaneous processing of channel and spatial attention. 
Together, these mechanisms enable the network to more 
effectively identify meaningful patterns. 
In this structure, the input feature map concurrently 
passes through both channel attention and spatial 
attention processes to obtain the relevant weights. These 

weights are then directly applied to produce the output 
feature map. This process is mathematically expressed as 
follows. 
 
𝐹4	=𝑀0(𝐹) ∗ 	𝑀1(𝐹) ∗ 		𝐹	 
	

(8) 

    As shown in Figure 5, we  have improved network 
accuracy by using both Parallel Convolution Block 
Attention Module and Squeeze-and-Excitation 
simultaneously at the end of the network. While this 
approach adds a few parameters to our proposed 
architecture, results show that accuracy is increased. 

Fig. 5. Our Proposed Attention Mechanism 
 
The final network structure, as outlined in Table II, 
includes the combined SENet and PCBAM attention 
mechanisms, the activation functions and the removed 
layers.  Key innovation of this paper is the combination 
and modification of various methods to improve object 
classification accuracy. this approach also aims to reduce 
the number of parameters and computational complexity. 
 

Table II. Final structure of proposed network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type / Stride Filter Shape Input Size Activation Function 
Conv / s2 3 x 3 x 3 x 32 224 x 224 x 3 Relu 

Conv dw / s1 3 x 3 x 32 dw 112 x 112 x 32 Relu 
Conv / s1 1 x 1 x 32 x 64 112 x 112 x 32 Relu 

Conv dw / s2 3 x 3 x 64 dw 112 x 112 x 64 Relu 
Conv / s1 1 x 1 x 64 x 128 56 x 56 x 64 Relu 

Conv dw / s1 3 x 3 x 128 dw 56 x 56 x 128 Relu 
Conv / s1 1 x 1 x 128 x 128 56 x 56 x 128 Relu 

Conv dw / s2 3 x 3 x 128 dw 56 x 56 x 128 Relu 
Conv / s1 1 x 1 x 128 x 256 56 x 56 x 128 Relu 

Conv dw / s1 3 x 3 x 256 dw 28 x 28 x 256 Relu 
Conv / s1 1 x 1 x 256 x 256 28 x 28 x 256 h-swish 

Conv dw / s2 3 x 3 x 256 dw 28 x 28 x 256 h-swish 
Conv / s1 1 x 1 x 256 x 512 28 x 28 x 256 h-swish 

Conv dw / s2 3 x 3 x 512 dw 14 x 14 x 512 h-swish 
Conv / s1 1 x 1 x 512 x 1024 14 x 14 x 512 h-swish 

Conv dw / s2 3 x 3 x 1024 dw 7 x 7 x 1024 h-swish 
Conv / s1 1 x 1 x 1024 x 1024 7 x 7 x 1024 h-swish 

 
(our proposed Attention Mechanism) 

 
Parallel Convolution Block Attention Module as the First Attention Mechanism 

Squeeze-and-Excitation Block is combined with Previous as the Second Attention Mechanism 

Avg Pool / s1 Pool 7 x 7 7 x 7 x 1024 
FC / s1 1024 x 1000 7 x 7 x 1024 

Softmax / s1 Classifier 7 x 7 x 1000 

Avg Pool

Max Pool

MLP

[Max Pool , Avg Pool ]

U

H

W
C

X

C

H

~

1 × 1 × C 1 × 1 × C

Fscale(∙,∙)

Channel attention

Spatial attention

Input feature
map

Fsq(.)
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5. Results and discussion 

CIFAR-10 is suitable for testing how well a model 
handles 7 low-resolution images in a controlled set of 
object classes. It's especially useful for benchmarking 
models that need to work with smaller, faster images, 
often used in mobile or embedded systems. Caltech-101 
is more challenging and allows testing of the model’s 
ability to classify a larger variety of categories with 
higher-resolution images. His feature makes it more 
suitable for real-world applications, such as autonomous 
vehicles or complex image recognition tasks.  By 
evaluating the model on both datasets, we  can 
demonstrate that the model has the ability to generalize 
across different levels of complexity, from simple tasks 
(CIFAR-10) to more challenging ones (Caltech-101). 
To validate our model, we trained it using both Caltech-
101 and CIFAR-10 datasets. The Caltech-101 dataset 
contains 9,145 images distributed across 101 classes. 
Each class contains between 40 to 800 images. The 
images in the dataset were labeled initially and then 
randomly shuffled for our experiments. From these, 1,500 
images were randomly selected for testing, while the 
remaining images were used for training purposes. 
On the other hand, the CIFAR-10 dataset consists of 
60,000 color images with dimensions of 32x32 pixels. 
These images are categorized into 10 classes, with each 
class containing 6,000 images. This dataset is divided into 
50,000 training images and 10,000 test images.The 
CIFAR-10 dataset is divided into five training sets and 
one test set, each containing 10,000 images, with 1,000 
images randomly selected per class in the test set.The 
training sets consist of the remaining images, selected 
randomly. As a result, some categories may have more 
images than others within the training sets. Overall, the 
training sets collectively contain 5,000 images from each 
class. 
Initially, we trained the proposed model on the CIFAR-10 
dataset for 50 epochs. Figures 6a and 6b present loss and 
accuracy curves, respectively. As illustrated in the figure 
below, the loss curve gradually decreases, while the 
accuracy curve reaches its maximum value in the final 
epochs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 6. 
(a) loss, and (b) accuracy of the train model vs. valid model on 

CIFAR-10 dataset. 
 
According to table III it can be seen that in CIFAR-10 
dataset, over 92% of the cases that our proposed model 
predicted as positive were actually positive And has 
correctly identified over 86% of the true positive cases. 
The balance between precision and recall, which is 
represented by the F1_score, was also 89%. 
 
 

Table III. Inforrmation of models on CIFAR-10 dataset. 
Network precision Recall F1-score 
Proposed 

Model 
0.923 0.864 0.889 

 
Confusion matrix as a valuable tool for evaluating the 
performance of classification models , provides detailed 
insights into the model's ability to correctly and 
incorrectly identify different classes. As shown in 
CIFAR-10 confusion matrix, the proposed model 
correctly classified 908 instances of the car class and 
accurately identified 705 instances of the dog class, which 
can be considered as potential obstacles for the cars. 

 
Fig. 7. Confusion matrix of the network on the CIFAR-10 

dataset. 
 

In the next stage, we trained our proposed network on 
Caltech-101 dataset, which contains more classes and 
higher-quality images. The aim of this work was to 
demonstrate the efficiency of the proposed model on 
another benchmark dataset. As illustrated in the figure 8a 
and 8b, the performance of the trained network on the 
Caltech_101 dataset is also remarkable. In fact, as the 
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number of training epochs increased, the model achieved 
higher accuracy and lower loss. 

As seen in Table VI The proposed model achieves a 
good balance between Precision and Recall based on the 
F1-score. Moreover, the results obtained in terms of 
accuracy and recall on the CALTECH-101 dataset 
demonstrate the effectiveness of our proposed model. 
The results of the confusion matrix in figure 9 indicate 
that the proposed model has performed  well overall on 
the Caltech 101 dataset and has been able to accurately 
classify the categories. The high number of True Positives 
and True Negatives prove that the model has mostly made 
correct predictions.  In contrast, low number of False 
Positives and False Negatives suggest that the model has 
not made many mistakes in classifying certain categories. 

 

 
Fig. 8. (a) loss, and (b) accuracy of the train model vs. valid 

model on Caltech-101 dataset. 
 
 

Table VI. Information of models on Caltech-101 dataset. 
Network Precision Recall F1-score 
Proposed 

Model 
0.893 0.847 0.834 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Confusion matrix of the network on the Caltech-101 
dataset (10 classes of 101 classes). 

 
Therefore, based on these results, it can be said that the 
model has performed well overall. 
In this article, we analyzed the performance of various 
networks on two datasets and compared them with our 
proposed network. Additionally, a closer look at the 
number of parameters in other networks shows how 
efficient our proposed network is in reducing 
computational and graphical processing load. The 
comparison table (V) clearly shows that despite having 
fewer parameters, our proposed network achieves 
significantly higher accuracy compared to its counterparts. 
 
Table V. Comparison of different information of 
different types of networks: (network’s volume and 
parameters number are estimated on 1000 classes). 

 Network 
accuracy 

on 
Caltech-

101 
dataset 

Network 
accuracy 

on 
CIFAR-

10 
dataset 

Network 
size 

(MB) 

Number of 
network 

parameter 

mobileNet 76.73% 84.2% 16.27 4.264.808 
shuffleNet 77.3% 83.4% 9.50 2.491.504 
GoogleNet 91.05% 92.9% 26.70 6.998.552 

mobileNetV2 78.2 % 87.3% 13.50 3.489.552 
VGG16 89.37% 91.4% 527.79 138.3 57.54 

Proposed 
Model 

90.07% 92.6% 12.25 3.211.245 
 

 
Our proposed network outperforms others on both datasets in 

terms of accuracy and number of used parameters, as shown in 
Table V. 

To introduce an application of this network in 
autonomous vehicles, we considered multi-object images 
containing humans and vehicles. The objects in These 
Images were localized by the pre-trained Single-Shot 
MultiBox Detector MobileNet then the single objects 
were given to our proposed network for classification. It 
is important to note that the SSD MobileNet was only 
used in the final section for lockalization in order to 
obtaine graphic outputs for for presenting a practical 
application. As shown in Figure. 10. 
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Fig. 10. 
Classifying of Localized Objects by Proposed Network. 

6. Conclusion 
The results of this study show that the proposed 

MobileNet-Att model, utilizing modified SE (Squeeze-
and-Excitation) and PCBAM (Parallel Convolution Block 
Attention Module), has achieved considerable 
improvements in accuracy and computational efficiency. 
These improvements include reducing the number of 
layers and parameters in the network, along with the use 
of effective activation functions and parallel architectures 
in attention mechanisms. 
          Evaluation of the model on the CIFAR-10 and 
Caltech-101 datasets revealed that MobileNet-Att 
provides remarkable accuracy in object classification 
while reducing computational load.These results confirm 
that the proposed model is not only suitable for 
autonomous systems but can also contribute to enhance 
the safety and efficiency of these systems. This research 
presents a practical approach to improving the 
performance and efficiency of convolutional neural 
networks in real-world applications. 
It should be noted that our proposed model may have 
lower performance with complex datasets, such as multi-
modal data. To address this issue, AutoML or dynamic 
attention mechanisms can enhance  accuracy. Using 
multi-head attention mechanisms, which allow the model 
to simultaneously focus on multiple features or different 
parts of the data, can also improve efficiency. 
      In addition to reducing dependence on labeled data, 
unsupervised or semi-supervised learning methods can be 
used. In real-time applications, computational complexity 
can be reduced by using model compression or distributed 
parallel processing. Furthermore, combining models with 
recurrent neural networks or using multimodal networks 
can enhance performance in sequential or time-series 
data. 
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