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Event-based load shedding (ELS) is a vital emergency countermeasure against 

transient voltage instability in power systems. Deep learning(DL)--based ELS has 

recently achieved promising results. However, in power systems, faults may occur 

that are not in the training database, reducing the model's effective performance. 

In this situation, it is necessary to update the model. On the other hand, updating 

the model for new faults requires a large database. To address the problem of 

unknown faults, this paper proposes a transfer learning-based graph convolutional 

network (GCN) model that allows updating the model with a small database. In 

the first step, an ELS model is trained with a large database. Then, if a new fault 

occurs, the model is transferred to the new fault and updated using transfer learning 

and with a small database. To evaluate the performance of the proposed model, it 

was implemented and tested on the IEEE 39 bus system. The results show that the 

proposed model has high-performance accuracy and can be updated with a small 

database when encountering an unknown fault. According to the results, the 

proposed model has reduced the database size by 78.91% for optimal updating. 
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1. Introduction 

     Due to economic considerations, modern grids 

operate very close to their stability limits. Therefore, 

generator trips and line outages can cause instability in 

the power system. A power system's voltage stability 

refers to its ability to maintain a permissible voltage on 

all buses in the event of a fault [1,2]. Voltage instability 

plays a vital role in the onset of blackouts, so researchers 

have studied this phenomenon for the past two decades 

[3,4]. Corrective or preventive measures are typically 

used to influence the situation before and after a fault 

occurs to prevent voltage instability. Suppose preventive 

measures fail to change the system condition from critical 

to alarm. In that case, corrective measures such as 

generation switching or load shedding (LS) can be 

employed as a cheap but reliable way of maintaining the 

integrity of the network. A significant parameter in load 

shedding is the amount of load to be disconnected to 
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maintain bus voltages within a stable and acceptable 

range. A lack of LS can lead to further failures, while a 

surplus of shedding can result in overdone and 

unnecessary curtailment. Several studies have been 

conducted to determine the optimal LS method using a 

variety of algorithms, modeling details, and objective 

functions. 

   Various heuristic methods are used for LS optimization 

to achieve the best results in the shortest time possible. In 

[5], a method based on the genetic algorithm (GA) was 

proposed for the steady state load shedding phenomenon 

in distribution networks for production shortage 

scenarios, which aimed to minimize the total curtailed 

load and system losses. According to [6], the loads were 

classified into fixed and random priorities based on their 

types, and the optimal LS was determined using a random 

combinations method for the random priority loads. An 

optimal strategy for LS under voltage was obtained by 



                                                    

483 Citation information: DOI 10.48308/ijrtei.2024.237789.1066, International Journal of Research and Technology in Electrical Industry 
 

IJRTEI., 2025, Vol.4, No. 1, pp. 482-489 

 

optimizing the inertia weight and learning coefficient of 

the particle swarm optimization (PSO) algorithm using 

fuzzy rules [7]. In [8], an LS method is proposed to 

remove the power deficiency and restore voltage and 

frequency stability. Furthermore, [9] considers an under-

voltage LS technique for determining an appropriate LS 

amount in an islanded micro grid. In [10], a UVLS 

optimization technique called Evolutionary Particle 

Swarm Optimization (EPSO) was proposed to identify 

the best remaining load while reducing power losses, 

voltage variations, and LS cost. It has also been shown 

that GA and artificial neural networks (ANNs) can be 

applied together to minimize network LS and voltage 

deviations [11]. 

    The above methods are time-consuming and lack 

convergence. Although extensive artificial intelligence 

(AI) methods, including shallow neural networks [12,13] 

and deep learning (DL) methods [14,15], have been 

developed for real-time stability assessment, the 

approaches for stability control are very limited. Based 

on CNN, [16] developed a method for reducing line 

loads. According to [17], a deep reinforcement learning 

(DRL) method was developed for under-voltage LS. In 

[18] and [19], the extreme learning machine (ELM) 

algorithm was used to maintain post-fault frequency 

stability, and the method was further developed in [20] 

for fault-induced delayed voltage recovery. [21] proposes 

a risk-averse DL method for real-time emergency LS that 

trains neural networks to avoid load under-cutting events, 

thus reducing the cost of control failures. With an event-

based model, [22] proposes intelligent LS and removing 

repetitive and harmful behavior to improve training and 

decision-making. Using DRL and data-driven strategies, 

[23] proposes an emergency LS technique.  

    LS methods based on DL have obtained promising 
results. However, these methods face a major challenge 
when implemented in real-world power systems. For LS, 
different models are trained for different potential faults 
and each model is applied to a specific fault. Assuming 
that the training data (i.e., the LS database) and the 
unknown data (i.e., the online measurement) follow the 
same distribution, the models usually achieve satisfactory 
accuracy. However, this assumption may not always hold, 
especially when a new fault occurs in the power system. 
In this situation, the accuracy of the existing methods 
decreases, which reduces the power system operator's 
confidence in data-driven models. 

    To solve this challenge, the authors propose updating 
the model for unknown faults using transfer learning 
(TL). For this purpose, a transfer approach based on fine-
tuning the pre-trained GCN model for faults in the 
training database is used. In this situation, the proposed 
model uses the optimal parameters and weights of the 
pre-trained model as initial conditions to update the 
model for new faults. With this fine-tuning, a good initial 
learning start for the update is achieved, which makes it 
possible to transfer the model to new faults with a small 
database. Also, using a small database reduces model 
update time. 

2. FOUNDATIONS OF DEEP NEURAL 

NETWORK MODELS 

     Machine learning (ML), as an important subset of AI, 

allows systems to automatically learn the necessary 

knowledge from data in a specific field. In traditional 

deep neural networks, excellent performance usually 

depends upon a large training database as well as a 

similar distribution between the training data (source 

domain) and the measured data in practical applications 

(target domain). However, meeting the above conditions 

in real-world applications is difficult for some research 

fields. TL is research topic in ML that focuses on storing 

knowledge acquired for a task and transferring that 

knowledge to a different but related task. The advantage 

of knowledge transfers or model migration is that the 

model with a small training database converges quickly 

and is trained efficiently. The original model can be 

trained with a large training database obtained using 

simulations, and knowledge transfer is used to enhance 

model performance with a small database. Knowledge 

transfer can significantly reduce the need for the target 

domain to have many samples for effective training. 

     ML-based LS builds a mapping relationship between 

input features (bus voltage magnitudes and angles) and 

outputs (optimal LS). In the LS of power systems, the 

offline training database covers only a limited number of 

faults. While in the online application of the LS model, 

various other faults may appear with a different data 

distribution from the training data. In this paper, faults 

that are not in the training database are called unknown 

faults. As a result, pre-trained ELS models may not be 

able to perform with high accuracy when faced with 

unlearned faults. The measured data from different faults 

in the power system have different but similar 

distributions. Therefore, they are suitable for applying 

parameter-based TL (knowledge transfer). In this 

situation, the source domain can be large for various 

faults with the database, while the target domain refers to 

a fault with a small database but similar characteristics. 

Since it is difficult and time-consuming to collect a large 

database when unknown faults appear, the use of TL can 

be beneficial for online ELS, enabling retraining for a 

new fault in less time and with fewer samples. The 

general idea of LS based on TL presented in this paper 

can be seen in Fig 1. 
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Fig. 1. Transfer learning for LS 
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3. GRAPH CONVOLUTIONAL NETWORK 

           In the GCN model, nodes and edges represent the 

power system buses and transmission lines. The input 

layer, hidden layer and output layer are constituent parts 

of a GCN model. Fig. 2 shows the structure of GCN.  In 

a graph G = (N, E) nodes represent nodes, and edges 

represent edges between nodes [24]. 
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Fig. 2. GCN algorithm 

• GCN Input Layer 

 

    GCN's input layer is comprised of a feature matrix and 

an adjacency matrix, as illustrated in equation (1). 

Adjacency matrices represent the relationship between 

graph nodes.  

 

Input=(X,A)                                                                              (1) 

    Also, 𝑛  and 𝑑  respectively indicate the number of 

nodes or buses in the system and the number of input 

features. 𝐴 also has 𝑛 × 𝑛 dimensions, which represents 

the adjacency matrix. A graph with an undirected 

adjacency matrix is expressed in the following way [30]: 

𝐴𝑖𝑗    = 𝐴𝑗𝑖 {

0, 𝑖 ↛ 𝑗
1, 𝑖 → 𝑗
1, 𝑖 = 𝑗

                                                         (2) 

    As indicated in this equation, 𝐴𝑖𝑗  indicates whether 

node i-th connects to node j-th. 

• GCN Hidden Layer  

    By using propagation rules, the hidden layer of the 

GCN can collect and send node info to the next layer. As 

features propagate through successive hidden layers, they 

become more abstract. The i-th node's layer-wise 

propagation rules are expressed below [24].  

ℎ𝑖
𝑙 = 𝜎(∑ �̅�𝑖𝑗

𝑁
𝑗=1 . 𝑤𝑙 . ℎ𝑖

𝑙−1 + 𝑏𝑙)                                     (3)                                                                                                                    

�̅� = 𝑄−
1

2. 𝐴. 𝑄−
1

2                                                                  (4)                                                                                                                                              

𝑄 = ∑ 𝐴𝑖𝑗

𝑁

𝑗=1
                                                                     (5) 

Where 𝑤𝑙  is a trainable linear transformation weight 

calculated by minimizing the loss function on all labeled 

data.  𝑏𝑙  represents the bias variable. �̅� is the normalized 

adjacency matrix. 𝑄  represents the degree matrix of the 

input graph. σ denotes a nonlinear activation function.  

ℎ𝑖
𝑙  is the i-th node feature of the l-th hidden layer. 

Initially, ℎ𝑖
0 = 𝑋. 

• GCN Output Layer 

    By extracting the features from the hidden layer, the 

output layer produces the optimal LS value based on the 

fitted equation . 

 

4. PROPOSED ELS MODELDESIGN 

Fig. 3 shows the proposed model for ELS in power 

systems, which uses a TL-based approach to manage 

unknown faults. In the proposed model, a large 

database of various faults is first created. Subsequent 

to the normalization of the database, a partition was 

implemented, allocating 80% of the data for the 

training stage and reserving 20% for testing 

purposes. Then, GCN-based ELS models are trained. 

The GCN-based model integrates topology 

information into the learning model to exploit spatial 

distribution features and improve model 

performance. Finally, if the model encounters 

unknown faults, TL updates it with a small database. 

Below are the different parts of the proposed 

method. 

4.1. Database Generation 

      In this step, a database is created to train the model. 

In this study, the voltage (V) and phase angle (P) of buses 

with generators are input features of the model. These 

features are directly obtained through the phasor 

measurement unit (PMU), making the proposed model 

suitable for online applications. In this case, voltage and 

phase angle information for different operating points are 

stored pre-fault, and the corresponding optimal LS is 

obtained with the help of genetic algorithm (By linking 

MATLAB and Digsilent). Finally, the database of 

different load levels is as follows: 

[

𝑉11 𝑉21 𝑉31

𝑉12 𝑉22 𝑉32

… … …

… 𝑉𝐵1 𝑃11

… 𝑉𝐵2 𝑃12

… … …

𝑃21 … 𝑃𝐵1

𝑃22 … 𝑃𝐵2

… … …
𝑉1𝑆 𝑉2𝑆 𝑉3𝑆 … 𝑉𝐵𝑆 𝑃1𝑆 𝑃2𝑆 … 𝑃𝐵𝑆

] [

𝐿𝑆1

𝐿𝑆2

…
𝐿𝑆𝑆

] (6) 

 

where B and S represent the number of buses and 

samples, respectively. 

     Finally, unstable points are obtained using the rotor 

angle index. According to this index, if the rotor angle 

difference between at least two generators is more than 

180 degrees when the fault occurs, the system is unstable 

[25,26]. Optimal LS should be done to stabilize the 

power system. The transient stability index of the rotor 

angle is formulated as follows: 

𝑖𝑓 {
max(δij) ≥ π → unstable

max(δij) < π → stable
                                         (7) 

 

4.2.  Offline Training  

       Using the database created in the previous step 

(source domain), the ELS model is trained. This paper 

introduces a GCN model for ELS. 

    In this study, the GCN model consists of two graph 

convolutional layers, one dropout layers, one fully 

connected layer for feature interpretation, and one output 
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layer. The graph convolution layers and the dense layers 

use rectified linear unit (ReLu) activation.  
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Fig. 3. Flowchart of proposed method 

 

After the graph convolutional layer, a 0.1 probability 

dropout layer is applied to reduce overfitting.  Finally, in 

the output layer, based on optimal weights, the amount of 

optimal LS is determined. 

    In offline training, the model is trained to minimize the 

difference between the estimated LS and the actual LS 

value, and learning parameters are obtained. To achieve 

this, a loss function and an optimization algorithm are 

necessary. In this situation, the estimated optimal LS is 

compared with the actual LS through the loss function. 

The optimization algorithm seeks to reduce the loss 

function by repeatedly updating the learning parameters. 

In this work, Huber is used as a loss function and   Adam 

is used for optimization, and Adams algorithm is used for 

its optimization. 

4.3.  Model Migration Scheme in Target Domain 

In case of an unknown and unlearned fault in the 

power system, considering that generating a large 

database is time-consuming and expensive [27], TL is 

used in this paper to enable retraining the model for the 

new fault with a small database.  If a new fault occurs, a 

small database called the target domain is first created in 

this situation. Then, the training database of the target  

domain is integrated into the pre-trained LS model for 

fine-tune the parameters. After satisfying the model 

evaluation indicators, a trained and optimized model is 

built. 

In the proposed transfer approach to retrain the 

model when encountering unknown faults, fine-tuning of 

all layers of the GCN model is performed. The structure 

and parameters of the pre-trained model are transferred 

to the new LS model and the layers are not frozen. It is 

used to fine-tune the layers to a small database associated 

with the unknown fault. In this situation, the weight 

matrix and bias matrix can be presented in the form of 

equations (8) and (9).  The loss function is calculated and 

the parameters of all layers are fine-tuned  to get the 

optimized 𝑤" and 𝑏".  

𝑤" = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒(𝑤𝑜𝑢𝑡 , 𝑤𝑙 , 𝑤𝑙−1, 𝑤𝑙−2, … , 𝑤1)                 (8)                                                                            

𝑏" = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒(𝑤𝑜𝑢𝑡 , 𝑤𝑙 , 𝑏𝑙−1, 𝑏𝑙−2, … , 𝑏1)                    (9)                                                                                                       

4.4. Online Application 
    During the online application phase, PMUs collect 

real-time measurements. After collection, the measured 

data are entered into the LS model, whose parameters are 
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optimized in the offline training phase. Finally, the power 

system's LS result is immediately determined. As shown 

in Fig. 3, if a new and unlearned fault occurs during the 

online application phase, the model is first retrained 

using and a small database, and then optimal LS is 

applied. 

4.5. Evaluation Indexes 

 To evaluate the models’ accuracy, the Root Mean 

Square Error (RMSE) and Mean Absolute Percentage 

Error (MAPE) criteria have been used[28], which are 

presented in (10) and (11), respectively. L_Actual is the 

actual load, L_Forecasted is the forecasted load, and N is 

the number of time steps. 

𝑅𝑀𝑆𝐸 = √
∑ (𝐿𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 − 𝐿𝐴𝑐𝑡𝑢𝑎𝑙)2𝑁

𝑖=1

𝑁
                   (10) 

𝑀𝐴𝑃𝐸 =  ∑ |
𝐿𝐴𝑐𝑡𝑢𝑎𝑙 − 𝐿𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑

𝐿𝐴𝑐𝑡𝑢𝑎𝑙

| ×
100%

𝑁

𝑁

𝑖=1

        (11) 

 

5. SIMULATION RESULTS 

This study implements the proposed model based on 

GCN on IEEE 39-bus system. Fig. 4 illustrates the 

system diagram, comprising 10 generators, 46 

transmission lines, and 39 buses. The assumption is that 

PMUs are positioned on buses with generators. Fig. 4 

also shows the graph structure used for the GCN-based 

model to consider spatial information of the power 

system. The Adam optimizer learning rate in the GCN-

based model is 0.001 and 64 batch sizes are employed to 

maximize GPU utilization. Also, the number of dense 

units is 256. Furthermore, to avoid overfitting, a 10% 

dropout for graph convolutional layers is applied. During 

training, 200 epochs are used in the GCN-based model. 

The proposed model is compared against other models, 

including convolutional neural network (CNN), long 

short-term memory (LSTM), random forest (RF) and 

support vector machine (SVM). The proposed scheme 

will be implemented using the Digsilent Power Factory, 

Matlab and Python platforms. 

5.1. Database Generation 

 The proposed method was evaluated using 

simulations on the New England 10-machine 39-bus 

system. Using the Monte Carlo method, operating points 

were generated. In order to develop the proposed model, 

a database containing different operating points is created 

as follows. To obtain the operating points, the load is 

randomly sampled within its practical change range. 

Specifically, according to the base load level for each bus, 

random sampling of load changes is performed. The 

range of load changes is considered between 0.7 and 1.25 

percent of the base load. Then, using time domain 

simulation, each operating point is assigned a stable or 

unstable label depending on the set of contingency faults. 

A final step is to determine an optimal LS value based on 

the available LS resources for operating points with 

unstable tags. The faults in this study occur on buses 17 

and 25 for 0.2 seconds. As a result of the preliminary 

sensitivity analysis in [29], buses 4, 8, 20 and 39 have 

been selected as candidates for LS. The maximum LS 

percentage at all candidate buses is set to 90%. GA is 

used as a heuristic algorithm to find the optimal 

emergency LS strategy for each generated sample. The 

size of the database is finally 4500 samples. For model 

training, 80% of the operating points are randomly 

selected, and the remaining 20% are used for model 

testing. 
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Fig. 4. The IEEE 39-bus test system 

5.2. Performance Evaluation of GCN-Based Model 

and Comparison with Other Approach 

    To clarify the GCN training process, Fig. 5 shows the 

change in the loss function for 400 iterations. According 

to the Fig. 6, it is clear that, in initial iterations, the value 

of the loss function of the training and testing database 

decreases rapidly. After 200 iterations, the loss function 

is almost constant and does not change much. This 

illustrates that the GCN model has converged. In general, 

GCN has a stable training process and converges rapidly 

Fig. 5. Training process of GCN model 

    In Table I, the effectiveness of the GCN model for 

different numbers of convolution layers and dense layers 

is evaluated based on time and MAPE indicators. For 

better evaluation, all tests were performed 5 times with 

different random seeds. Model accuracy increases with 

increasing layers, according to the results. But it should 

be noted that for two layers of graph convolution and two 

fully connected layers, the model achieved a MAPE of 

4.21%. With more layers, the model achieves almost the 

same MAPE, so the optimal number of layers is two 

graph convolution layers and two fully connected layers. 
Also, in this case, the model's training time is 549.52 

seconds, which increases with the increase in layers. The 

crucial point for selecting the number of layers, in 



                                                    

487 Citation information: DOI 10.48308/ijrtei.2024.237789.1066, International Journal of Research and Technology in Electrical Industry 
 

IJRTEI., 2025, Vol.4, No. 1, pp. 482-489 

 

addition to model accuracy, is to pay attention to less 

training time. LS models may need to be updated for 

various reasons, and the shorter the update time, the 

better the model. Increasing the number of layers slows 

down the updating of the online LS model.  

 
Table I. Performance of GCN model based on number of layers 

Graph 

convolutional 

layer 

Fully 

connected 

layer 

MAPE (%) Time(s) 

1 1 7.85 315.12 

2 1 6.41 442.34 

3 1 5.43 571.78 

1 2 6.74 394.24 

2 2 4.21 495.14 

3 2 4.18 604.45 

1 3 5.28 452.64 

2 3 4.18 588.33 

3 3 4.21 657.91 

 

    Testing the proposed model on source domain data is 

presented in this section. In order to rationally evaluate 

the performance of the proposed model, comparative 

tests are performed with DL models such as CNN and 

LSTM as well as shallow ML models such as SVM and 

RF using evaluation indices including MAPE and RMSE. 
All tests were performed 5 times with different random 

seeds to provide a valid comparison of other classifiers.  

TABLE II shows the accuracy results of different 

algorithms. 

TABLE II. Comparison of prediction accuracy of 

different approaches 
Approach MAPE (%) RMSE (%) 

Proposed method 4.21 3.92 

CNN 5.63 4.86 

LSTM 6.15 4.95 

RF 8.12 6.75 

SVM 8.96 7.54 

 

    Table II shows that GCN has the highest accuracy, and 

CNN and LSTM have better accuracy than RF and SVM. 

This indicates that considering the structural information 

of the power system by GCN can help to achieve high-

performance accuracy. One of the reasons for the 

superiority of GCN over other algorithms, especially 

CNN, is to pay attention to the topology of the power 

system. GCN is able to obtain the relationships between 

the voltage magnitude and the angle of the buses, which 

are the input data, according to the topology of the power 

system, and extract effective features for classification. 

5.3. Evaluating Performance of Proposed Method 

for Unknown Faults  

     In LS studies, training databases typically encompass 

a limited number of faults. However, in real-world 

applications, other faults may emerge, characterized by 

distinct data distributions from those in the training 

database. Consequently, a pre-trained LS model may 

perform suboptimally for new faults that have not been 

previously encountered. This situation necessitates 

retraining the LS model for new faults. However, deep 

neural networks require a large training database to 

retrain effectively and achieve excellent performance. 

Collecting and labelling a large         amount   of data   for 

each new fault is costly, time-consuming, and 

challenging. In this situation, model migration can be 

beneficial. The TL technique is helpful for model 

migration because the model can be trained effectively 

and quickly with a small database using this technique. 

In general, model migration can significantly reduce the 

need for a large number of samples from the target 

domain. 

    In order to test the TL capability of the proposed 

model, two unknown faults are considered. Table III 

presents the unknown fault settings for the LS model. 

Table IV shows the test results of the original GCN 

trained with source data for unknown fault scenarios. 

Table IV shows that the original GCN model's 

performance accuracy has declined significantly in 

unknown fault scenarios. Consequently, the original 

GCN trained in the source domain will need to be 

updated and transferred to the new unknown fault 

scenario. To verify the efficiency of the proposed 

method, three different transfer approaches are used to 

update the original GCN. Approach 1 is the one adopted 

in this paper, which is discussed in more detail in section 

IV, while approaches 2 and 3 are as follows: 

 

Approach 2: The structure and parameters of the original 

GCN model are transferred to the new model, and only 

the fully connected layers are fine-tuned, and the other 

layers are frozen. 

 Approach 3: The structure of the original GCN model is 

transferred to the new model, and the parameters of the 

model are initialized randomly. 

TABLE III. Contingency unknown faults 

Scenario Fault Fault setting Duration(s) 

1 UF1 Fault bus 13, Trip 10-13 0.25 

2 UF2 Fault bus 11, Trip 10-11 0.15 

TABLE IV. Performance of the proposed model for 

unknown faults 
Scenario 1 2 

MAPE (%) 15.25 13.97 

RMSE (%) 13.78 12.46 

 

    Fig. 6 shows GCN's performance after transferring and 

updating based on these three approaches. The 

comparison of approach 1 and approach 2 shows that 

only fine-tuning of fully connected layers does not 

provide enough learning space for new samples. In this 

situation, approach 2 achieved a MAPE of 7.05 % at best. 

That is unacceptable. Therefore, approach 2 cannot 

guarantee the model's successful performance when 

transferring to new faults. Based on a comparison of 

approach 1 and approach 3, sharing the structure and 

parameters of the original model leads to a good learning 

point for the new GCN. This good start to learning has 

caused Approach 1 to achieve a MAPE of 4.30% with 

650 training samples. Therefore, updating with approach 
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1 only requires a database with 650 samples, which 

should be obtained by long simulation. Meanwhile, 

approach 3 with 1950 training samples reached a MAPE 

of 4.35%. As a result, more samples have to be generated 

and labeled, making updating and transferring the model 

more time-consuming. According to the obtained results, 

the proposed approach has better performance than other 

approaches and successfully transfers the model to new 

faults. Table V summarizes the performance of different 

approaches for model updating. Examining the results of 

Table V shows the superior performance of the proposed 

approach for updating. 

 
Fig. 6. Comparison of effect of different transfer approaches 

 

 

Table V. Performance of different approaches to updating 

 Approach 1 Approach 2 Approach 3 

MAPE (%) 4.30 7.14 4.35 

Database size 650 650 1950 

 

5.4. Impact of Noisy Data 

    PMU s are highly accurate measuring devices, but the 

data sent by the PMU to the Wide-area measurement 

system (WAMS) centers may contain noise and be error-

prone. To investigate the effect of noise data on the 

performance of the proposed model, two scenarios are 

studied in this section. In the two studied scenarios, noise 

is added to the database randomly so that the total vector 

error provided by the PMUs is below 1% [30].  In this 

paper, the effect of noise and measurement error of 

PMUs was investigated as follows: 

 

Scenario 1: Data does not contain noise. 

Scenario 2: Test data contains noise. 

Scenario 3: Both training and testing data contain noise.  

 

    The test results for the described scenarios are 

presented in Table VI. These results demonstrate that 

noisy data diminishes the accuracy of the proposed 

models but remains within an acceptable range for LS. 

 
TABLE VI. Accuracy of Proposed Models for Noisy Data 

 Scenario 1 Scenario 2 Scenario 3 

MAPE (%) 4.21 7.22 5.45 

RMSE (%) 3.92 6.95 5.11 

 

5.5. Performance Testing of Proposed Model When 

Changing Topology 

    In practical applications, an LS model's performance 

may degrade when the power system topology is 

changed. Therefore, an effective online LS model should 

adapt as much as possible to new topologies. To 

demonstrate the impact of changing the topology on the 

model's performance, several topologies of the IEEE 39-

bus system were evaluated. In this scenario, the trained 

model with the original (base) topology is used in the face 

of unknown topologies. Table VI shows the decrease in 

model accuracy when facing unknown topologies. 

However, for T2 and T3, the decrease in performance 

accuracy is higher. This shows that for T2 and T3, the 

difference between the training data distribution and 

target data (T2 and T3) is greater than T1. However, the 

LS model maintains a satisfactory level of accuracy, as 

evident in the experiments in Table VI, which emphasize 

the model's robustness in the face of unknown topologies. 

Addressing the reduction of accuracy in unknown 

topologies is a necessary requirement that is outside the 

focus of this paper. 

 
Table VI. Performance for unknown topologies 

Scenario Out of service MAPE (%) 

T1 Line 25-26 6.12 

T2 Line 26-27 7.58 

T3 G 06 8.64 

5.6. Calculation Times 
 

Calculation times for training and testing the proposed 

GCN model can be seen in Table VII. Table VII shows 

that the model's training time is 452.14 s, and the testing 

time is 21.87 s. Since the number of test data is 900 

samples, the proposed model processes each sample in 

0.023 s. Therefore, the proposed model is fast enough to 

meet online applications' data processing speed 

requirement, which is less than 0.033 s [31]. It is 

imperative to underscore that the model's training process 

is conducted offline. Within the domain of ML models 

for LS, the primary focus pivots around accuracy and test 

time. 
Table VII. Calculation time 

 Training time(s) Testing time(s) 

Proposed method 452.14 21.87 

 

6. Conclusion 

    Promising advances have been made in data-driven LS 

methods, which have yielded promising 

results.  However, the issue of unknown faults challenges 

implementing these methods in real-world power 

systems.  This paper proposes an innovative GCN-based 

TL method for ELS focusing on rotor angle instability to 

solve the problem of unknown faults. The proposed 

method has been implemented on the IEEE 39 bus 

system, and the simulation results show its successful 

performance. In the proposed method, TL is used for 

updating; in this situation, the model does not need an 

extensive database for adequate updating. This reduces 

the generation time of target domain samples and makes 

the proposed method more suitable for practical online 

applications. The value of the proposed model for the 

evaluation indices MAPE and RMSE is 4.21% and 

3.92%, respectively, less than other models. Also, using 

TL has reduced the database size for practical training by 

78.1%, reducing the update time. The literature does not 

report similar works. TL can be an up-and-coming 

method for solving other problems, such as unknown 

topologies and operating conditions in data-driven 
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ELS.  Since it is possible to change the topology and the 

occurrence of an unknown fault simultaneously in real-

world power systems, the authors consider investigating 

unknown faults and topologies together for future work. 
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