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In this paper, an adaptive super-twisting sliding mode fault-tolerant control (FTC) 
method is proposed to control the attitude of a satellite with four reaction wheels. 
This method has several advantages, such as preventing singularity phenomena, 
achieving convergence in finite time, and reducing the chattering phenomenon. 
Additionally, a sliding adaptive fault estimation mechanism is designed to estimate 
actuator faults, including complete failures, despite the influence of external 
disturbances and uncertainties in the satellite's attitude dynamics. Furthermore, an 
optimal control allocation scheme is employed to distribute the control signal to 
the actuators in real-time, even in the presence of faults, failures, and some 
limitations. To increase the accuracy of the model, the dynamics of the actuators, 
which have a pyramid configuration, are incorporated into the dynamics of the 
satellite's attitude. The stability of the closed-loop system with the proposed 
controller is analyzed using the Lyapunov method. Finally, the effectiveness of the 
proposed method is confirmed through simulations and comparisons with a 
traditional sliding mode method. 
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1. Introduction 
Attitude control is the task of determining, stabilizing, 
and optimally directing a satellite during its lifetime, 
despite all internal and external environmental 
disturbances and faults [1]. In recent decades, the 
problem of attitude control for rigid spacecraft has 
become an active research field due to its significant 
applications, such as aerial photography, weather 
forecasting, and remote sensing [2,3]. However, the 
attitude dynamics are nonlinear, highly complex, and 
subject to external disturbances and uncertainties. 
Therefore, research in the field of satellite attitude 
control has increased to ensure the stability and high 
reliability of satellites. 
Due to the high cost of launch and maintenance, 
reliability is one of the most important considerations in 
the design of an attitude control system. Actuator faults 
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clearly reduce the performance of the control system and 
may even lead to its instability. Therefore, in recent 
years, the use of fault-tolerant control (FTC) methods in 
satellite attitude control systems has been emphasized 
[4-7]. 
In general, FTC methods can be divided into two 
categories: passive and active fault-tolerant control. The 
passive FTC method can handle various faults, but its 
fault tolerance often comes at the cost of system 
performance. Hence, active FTC is used to overcome 
these disadvantages. The active FTC method includes a 
fault detection and diagnosis (FDD) module that detects 
and identifies faults and failures in real-time. By 
reconfiguring the controller, it actively responds to the 
faults in the control system. Sliding mode observers are 
commonly used to detect and identify faults in 
spacecraft [8-10], [9]. 
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Several methods have been proposed for designing 
attitude control, with the sliding mode control (SMC) 
method being the most common [11-14]. SMC and its 
variations, such as terminal sliding mode control 
(TSMC), have been studied and applied due to their 
superior properties, including fast and highly accurate 
tracking [15]. However, TSMC has some disadvantages, 
such as singularity and chattering. To avoid singularity, 
TSMC-based controllers like non-singular TSMC 
(NTSMC), which also operates in finite-time, have been 
utilized in spacecraft [16,17]. TSMCs are suitable for 
second-order systems and certain classes of higher-order 
systems. Therefore, a universal NTSMC method was 
proposed to ensure the finite-time stability of nonlinear 
systems while avoiding singularities [18]. 
To address the chattering problem, various approaches 
have been proposed, including boundary layer methods, 
high-order SMC-based methods, and sliding mode 
control with adaptive switching gain [19-26]. However, 
sliding mode control with adaptive switching gain does 
not completely solve the chattering problem. Therefore, 
in this paper, we propose the super-twisting non-
singular terminal sliding mode control, which 
significantly reduces chattering, has no singularity 
issues, and is also suitable for high-order systems [7]. 
To increase the reliability of spacecraft, enhance 
maneuverability, and make the system fault-tolerant, 
spacecraft are usually equipped with additional 
actuators (more than three). Using command allocation 
(CA) techniques, a desirable control goal is achieved by 
appropriately distributing control commands to each 
actuator [27,28]. 
In this paper, we apply a proposed super-twisting sliding 
mode controller to the attitude dynamics of satellites, 
which are affected by disturbances and uncertainties. 
The actuators are four reaction wheels with a pyramidal 
configuration that are subjected to loss of effectiveness 
faults as well as failure. To estimate the faults, a sliding 
mode observer is used. In addition, a command 
allocation (CA) algorithm is employed to properly 
distribute the control commands. Using the proposed 
method, chattering and singularity problems are solved, 
and finite-time convergence is achieved. 
The paper is organized as follows: Section 2 presents 
satellite kinematic and dynamic models, along with the 
dynamics model of reaction wheels (RWs). In Section 3, 
an adaptive sliding mode observer is proposed to 
estimate actuator faults. A super-twisting sliding mode 
fault-tolerant controller is designed in Section 4. Section 
5 presents an optimal command allocation. In Section 6, 
the simulation results are provided to evaluate the 
performance of the proposed method, and finally, 
Section 7 concludes the study. 
 
2. Dynamics Model of the Satellite Attitude and 

Reaction Wheels  
 

In this section, we describe the kinematics and dynamics of 
the spacecraft attitude. The kinematic model of the spacecraft 
using modified Rodriguez parameters (MRP) is described as 
follows [18]:  

              (1) 

where  indicates the attitude of MRPs of the 

spacecraft and  is the angular velocity vector of 
the satellite expressed in the body coordinate system relative 
to inertia. Moreover, denotes the identity matrix with 

dimensions 3 by 3, and denotes skew symmetric matrix 
of a given vector : 

 
Also, the satellite attitude dynamics model is: 
 

                                               (2) 

where  is the angular velocity of the satellite,  is the 
inertial matrix of the satellite, is the control torque 

produced by the actuators, and  represents the external 

disturbances and  denotes skew symmetric matrix of a 
given vector : 

 
 
If the satellite actuators are four reaction wheels, the 
dynamics equations of the satellite attitude along with 

the reaction wheels are modeled as follows [19], 
and [26]: 
 

                         (3) 

                                                                    (4) 
 
where  is the distribution matrix,  is the generated 

torque of the wheel and  is the angular momentum of the 
reaction wheel. Also, the angular momntem is related to 
angular velocity as 
 

                                                                (5) 
 
where  is the inertia matrix of the reaction wheel, and  
is the angular velocity of the wheel. Now, considering faults, 
the attitude dynamics (3) is modified as follows: 
 

          (6) 
 
where  is the loss of effectiveness matrix, and  is the 
bias fault.  is denoted as the disturbance torque. The matrix 
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which for a satellite with 4 reaction wheels is shown as 
follows: 

 
where  means that the th actuator is healthy, 

 shows a loss of effectiveness, and  means 
the th actuator is completely failed. Additionally, we define 
a new variable as follows  
Assumption 1. The control torque provided by the actuators 
is bounded, i.e , where  is a positive 
constant. 
Assumption 2. The nonlinear function  is the 1st order 
Lipschitz function with a Lipschitz constant , which is 
formulated as follows: 
 

                                         (8) 

 
 is the estimation of  and . 

Assumption 3. Disturbances are bounded with a non-
negative constant  as  

 
3. Adaptive Sliding Mode Observer 

 
In this section, by assuming that there exist sensors 
to measure the angular velocity of the satellite , 
an adaptive sliding mode observer is used to 
estimate the loss of effectiveness  and bias fault 

 To this aim an estimation of  is also required 
to have a criteria for the error of faults estimations. 

 is also derived by an observer.  

Since  is a diagonal matrix, the term  is written 
as follows: 

 
where  and 

 Therefore, the dynamics (6) is 
rewritten as follows: 
 

 (9) 
 
Now, to estimate the angular velocity of the satellite , 
an adaptive sliding mode observer is proposed in [9] as 
follows:  
 

        (10) 
 
where    is a predetermined diagonal 
matrix, such that  and  is a 
positive time-varying function defined as: 

   
                                                                        (11)  
where  and  are small positive constants,  is also 
greater than zero, so that  becomes non-negative. 
Using (9) and (10), we have: 
 

   (12) 
where  and  The estimations of the 
loss of effectiveness as well as the bias fault,  and  
are calculated as following: 
 

                                           (13) 

                                              (14) 

where  and  are learning rates which are positive 
constants. 

Assumption 4.  is bounded, with a constant  In 
addition, the following conditions are also satisfied: 

 
Theorem 1.  ([9]) For the dynamics given in (9), if 
assumptions (2), (3) and (4) hold, then, the estimations 
error of the angular velocities, and faults provided by 
adaptive sliding mode observer (10-14), are stable 
which means accurate fault estimations are provided.  
Proof. To prove the stability of the fault observer, we 
use the Lyapunov function as follows: 
 

            (15) 

 
where  is a positive constant. By deriving the 
Lyapunov function, we have: 
 

 
                                                                            (16) 
From Assumption 2,3, and 4, and using equations (11), 
(13), and (14), for the case  we have: 
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is zero and from Assumption 5, we have: 
 

                        (18) 
 
Therefore, due to , we have 

 For the other case ,  the inequality (17) 

results in  due to  and 
Assumption 5. Therefore, stability of the estimation 
errors is proved.   
Additionally, for the case  according to equation 
(16) with substituting equations (13) and (14), we have: 

    (19) 
From Assumption 5 and using  

 is concluded and therefore stability of the 
estimation errors is concluded  
Note 1. The aforementioned adaptive sliding-mode 
observer, unlike many developed observer design 
approaches, does not require prior knowledge about 
uncertainties or disturbances. 
 
4. Super Twisting Sliding Mode Controller 

 
For traditional TSMC, there are two weaknesses, 
singularity and chattering. In order to solve these two 
problems and also to have higher performance, a super 
twisting NTSMC is applied. We first give a lemma: 
Lemma 1 [23] Consider the following dynamics: 

 
The origin is a global finite-time stable equilibrium 
point if the following two conditions hold: 
1. , which is a Lyapunov function, is positive definite. 

2.  where and  
We first define a traditional terminal sliding surface as 
follows: 

                                                       (20) 
where  and both  and  are positive odd 

integers which satisfy the condition of . By 

applying an appropriate control, the states of the attitude 
control system converge from any initial condition 
along the sliding surface in finite time to their desired 
equilibrium points  In real engineering 
applications, the states usually do not reach ideal 
equilibrium points, but enter a small set that contains the 
origin, i.e.   
For the satellite whose kinematics and dynamics are 
given in equations (1) and (6), the following super 
twisting terminal sliding mode control law is proposed: 

    

                                                                      (21) 
where  represents the pseudo-inverse function of a 
given matrix,  and  are small positive constants. 
Assumption 5. The rate of disturbances and bias fault is 

bounded;  where  is defined as 

. 
Theorem 2. For the attitude dynamics of a satellite with 
four RWs given by (3-6), by using the control law (21), 
finite stability is guaranteed despite the uncertainty of 
inertia matrix, external disturbances, and faults, if 
Assumption 6 is satisfied and there exist symmetric and 
positive definite matrices  and 

 such that the following LMI holds: 
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Proof. Derivative of the sliding surface (20) and using 
equation (6), we have: 
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By substituting (6), (21) in (23) we have: 
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By defining new variables as follows,  
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Derivative of these variables by substituting equations 
(26) and (27) are as follows: 

       
                                                                           (28) 

          (29) 
 
Considering , equations (28) and (29) can 
be rewritten as follows: 
 

 

 

                                       (30) 

 

where  and  From Assumption 
6, we have: 
 

                                                      (31) 
 
Now consider a positive definite Lyapunov function as 
follows: 
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From (32) we have: 
 

                      (33) 
 

where . 
The derivative of the Lyapunov function using 
equations (30) and (32) is as follows: 
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From equation (30), we have: 
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phenomenon. To prevent this phenomenon, we modify 
the control law (21) as follows: 
 

    (41) 
where 
 

                      (42) 

 
and  is defined as follows: 
 

                               (43) 
 

 is the upper bound of the saturation function. 
The proof and analysis of this modification was given in 
[19]. 
 
5. Online closed-loop FTC allocation design with 

optimization method 
 

Due to the possibility of actuator fault, the proper 
distribution of the control command between the 
redundant actuators should be done by the command 
allocation unit which is calculated by minimizing a cost 
function as follows 

 
where  is the desired system control torque, and 

   represents the actual actuator 
torque produced by the reaction wheel. 

 and  are the lower 
and upper bound of the actuators torques: 

 

 
where   denote the minimum and maximum 
actuator rates, respectively.  
This optimization problem minimizes the distance 
between the desired control signal and the torques 
provided by the all actuators. This is done by 
distributing the signal between the actuators based on 

their healthiness ( ) and the distribution matrix,  

For example, if the ith actuator is failed  or it has 

loss of effectiveness  then the control signal is 
rerouted and distributed to other actuators to 
compensate this fault and therefore the other actuators 
produce more torques.  
In addition of the mention cost function, another cost 
function can also be selected such that the energy 
consumption is also minimized and from the actuators 

saturation is prevented. Therefore, we consider the cost 
function as follows [23]: 
 

 
                                                                      (49) 
 

 is the desired actuator torque, that is, when the 
actuators are all healthy.  is the sampling time, and 

 and  are weight matrices.  
In the case of failure or fault of the ith RWs,  is 
redirected or distributed to other actuators. Moreover, 
the control torques quickly converge to the desired 
command when choosing a large  In addition, if  
is large, the response of the actuators will be smooth.  
Solving the optimization problem, the optimal CA 
solution is obtained as follows: 

 
where  and 

 and  In addition, 

 and  and  

are auxiliary matrices. 
 
6. Simulation results 

 
In this section, we examine the performance of the 
proposed method applied to satellite attitude control in 
the presence of external disturbances, uncertainty in the 
inertia matrix, and the simultaneous loss of effectiveness 
in the actuators in two scenarios. Since our method 
extends the method NTSMC proposed in [18], the 
results are compared with.  
The spacecraft actuators are four RWs which are 
configured as a pyramid. The maximum torque of each 
RW is  Assembly angles are  

 and  The upper bound of 
the angular velocity and its rate for each wheel are 

 and  respectively. The inertia 
matrix and its uncertain part are as follows: 
 

 
 
External disturbances are also considered as follows: 
 

 
 
Satellite initial angular velocities and Euler angles are 

 and 
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respectively. 
Scenario 1: A loss of effectiveness in the first wheel and 
a complete failure of the reaction wheel in the second 
actuator occurred at the same time, which are as follows: 
 

,  
 
The simulation results are presented in Fig. 1-4. As 
shown in Fig. 1, the actuator faults are estimated with 
high precision which means the applied observer works 
properly. Fig. 2 illustrates the attitude of the satellite 
based on Modified Rodrigues Parameters using both the 
NTSMC method [18] and the proposed super-twisting 
non-singular terminal sliding mode control. From the 
left figure, it is seen that the proposed method is faster 
than NTSMC and its transition response is better. The 
right figure which is the results between 600-1000 
seconds shows more accurate regulation is achieved by 
the proposed method Fig. 3 and 4 depict the regulation 
of the satellite's angular velocities, demonstrating that 
the proposed super-twisting NTSMC method 
outperforms the NTSMC method [18] in terms of 
accuracy and reduced chattering. Fig. 4 shows the 
reaction wheel torques, which remain within their 
specified limits and it is seen our proposed method 
reduces the chattering significantly. 
Scenario 2: In another simulation, a loss of effectiveness 
in the first wheel, a complete failure of the second 
reaction wheel, and a loss of effectiveness in the third 
wheel occurred at different times as follows: 

   ,  

 

Fig. 5 depicts the regulation of the satellite's angular 
velocities of the proposed super-twisting NTSMC 
method compared with NTSMC method [18]. As seen, 
the results from the proposed method is faster. Fig. 6 
shows the command allocation between the four 
reaction wheels. This figure shows that the torques 
provided by the actuators are changed when a fault is 
accrued (t=60s). According to the figure, the chattering 
has significantly decreased compared to the NTSMC 
method [18]. 

 

 
Fig 1. Estimating of the loss of effectiveness Blue 
diagram: fault, red diagram: estimated fault (Scenario 
1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 2. Satellite attitude based on modified Rodrigues 
parameters in scenario 1. Blue diagram: proposed 
method, red diagram: NTSMC method [18] (Scenario 
1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3. Angular velocities of the satellite in scenario 1. 
Blue diagram: proposed method, red diagram: 
NTSMC. [18] (Scenario 1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4. Reaction wheels’ torques in scenario 1. Blue 
diagram: proposed method, green diagram: NTSMC 
[18]. (Scenario 1) 
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Fig 5. Angular velocities of the satellite in scenario 2. 
Blue diagram: the proposed method, red diagram: 
NTSMC [18]. (Scenario 2) 
 

 
 

Fig 6. Reaction wheels’ torques in scenario 1. Blue 
diagram: proposed method, green diagram: NTSMC. 
(Scenario 2) 
 
7. Conclusion 

In this paper, we proposed a finite-time attitude control 
method using a super-twisting adaptive sliding mode for 
a satellite with four reaction wheels. To increase the 
accuracy of the controller, the dynamics of the reaction 
wheels were also incorporated into the attitude 
dynamics model. The stability of the super-twisting 
adaptive NTSM fault-tolerant controller, in the presence 
of uncertainties in the inertia matrix, external 
disturbances, and two types of faults (loss of 
effectiveness fault and bias fault), was proved using the 
Lyapunov method. An adaptive sliding mode observer 
was employed to estimate actuator faults, and its 
stability was verified. Additionally, a command 
allocation (CA) technique was applied to optimally 
distribute the commands among the actuators. The 
results show that, compared to traditional methods like 
the NTSMC method, higher performance in terms of 
reducing chattering phenomena and improving accuracy 
in regulating to the desired attitude in finite time was 
achieved. 
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