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Power system reliability hinges on accurate and timely fault classification, yet 

many real-world scenarios face data scarcity due to logistical and economic 

constraints. Traditional methods often struggle to maintain performance with 

limited training samples, creating a critical gap in practical applications. Fault 

classification in power systems often requires robust models that can be 

generalized from limited data. Traditional deep learning approaches, while highly 

effective, usually need large datasets to achieve acceptable performance. In this 

paper, we propose a novel convolutional neural networks (CNN) framework for 

fault classification tasks using small-scale databases. This is novel because it 

leverages transfer learning to adapt a pre-trained model in deep learning to the 

target domain of fault classification. Compared with other methods, our approach 

minimizes the dependency on large datasets besides achieving high accuracy and 

generalizability. Extensive experiments demonstrate that the proposed approach 

achieves state-of-the-art performance, validating its efficacy for scenarios with 

limited data availability. This research provides an essential step in applying deep 

learning to the fault classification problem of limited data resources, further 

pushing toward practical and accessible solutions for the field. 
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1. Introduction 

Fault classification has been one of the prime 

necessities for the reliability and safety of systems 

under consideration, especially in power systems, 

manufacturing, and transportation [1]. Correct 

identification and classification of faults are critical to 

timely intervention, thereby minimizing downtime 

and preventing possible hazard. In the last decade, 

machine learning, especially deep learning, has 

catapulted fault classification to new heights with 

abilities to produce superior accuracy and better 

feature extraction capabilities than traditional methods 

[2]. Deep learning models, such as CNNs, excel in 

capturing complex patterns and dependencies in data 

[3]. However, their performance is heavily reliant on 

the availability of large, labeled datasets. This poses a 

significant challenge in many real-world scenarios 

where data collection is expensive, time-consuming, 

or infeasible due to operational constraints [4]. In such 

cases, the limited size of the dataset can hinder the 

model's ability to generalize effectively, leading to 

suboptimal performance. Transfer learning has also 

emerged as a promising solution to address the 

limitations of small datasets. By utilizing knowledge 

from a pretrained model, transfer learning allows for 

the adaptation of a deep learning model to a new 

domain with minimal additional training [5]. This 

approach has been successfully applied in various 

fields, including computer vision, natural language 

processing, and medical diagnostics, demonstrating its 

potential to enhance performance in data-scarce 

environments [6]. 

Given the high importance of the subject under study, 

as mentioned in the previous section, many studies 

have been conducted in this field so far, and in this 

section, we will examine new studies. Fault location in 

power systems can be categorized into three 

methodologies: traditional, observant, and intelligent 

[7]. Traditional methods rely on customer reports, 

such as noticing downed wires, while observant 

methods utilize intelligent meters or local detectors to 

provide feedback to operators. Intelligent methods 

employ advanced technologies like smart sensors and 

expert systems, including Artificial Neural Networks 

(ANNs) and Genetic Algorithms (GAs), for fault 

detection. Additionally, data-driven approaches 

leverage machine learning to analyze large datasets, 

while model-driven techniques rely on mathematical 

models of the power system. The choice of 

methodology depends on the specific application and 

data availability. Smart grids, despite their 

advancements in communication and information 

technologies, remain prone to faults. Therefore, 

accurate fault detection, classification, and 

localization are essential for efficient maintenance, 

rapid fault identification, and power restoration [7]. 

 

It is also useful to use data-driven approaches to detect 

faults in nonlinear systems since they are not 

dependent on system structure [8,9]. As deep learning 

and parallel computing hardware have advanced 

rapidly, data-driven methods have emerged as highly 

promising solutions for real-time fault diagnosis. 

Further, data-driven algorithms are highly noise-

resistant, making them ideal for dealing with complex 

classification problems. It has been demonstrated that 

Deep Neural Networks (DNNs), such as ANNs and 

CNNs, are capable of detecting and classifying faults 

[10-12]. 

The complexity of ANN structures has also increased 

over the past few years, with different architectures 

designed to address different application scenarios. An 

advantage of ANN-based methods is that they do not 

require a pre-existing knowledge base for fault 

detection. In this way, they can detect, locate, and 

classify faults in the power system rapidly and 

precisely [12,13]. Fault classification has been done 

with CNNs, and they can be complemented by other 

techniques, such as the Discrete Wavelet Transform 

(DWT), to develop fault classification approaches [10]. 

In the smart grid, deep learning algorithms can be 

trained on labeled fault data to detect, classify, and 

locate faults in real time [14-16]. CNNs are commonly 

used for classification and computer vision tasks [17]. 

While ANNs are suitable for handling a variety of data 

types, CNNs are best suited for image-based data 

[14,18]. Power distribution grids, transmission lines, 

and photovoltaic modules have all been used in the 

detection and diagnosis of faults with these algorithms. 

These approaches are aimed at creating a system based 

on ANNs that can identify and classify transmission 

line faults as soon as they occur in a timely manner. 

ANNs and CNNs can diagnose faults in the smart grid 

in real time, providing the fault type and location, 

enabling operators to take appropriate actions. By 

utilizing these models, power systems can be 

enhanced in terms of reliability and efficiency, 

resulting in fewer downtimes and improved customer 

satisfaction. For the detection and isolation of faults in 

microgrids without shutting down the entire system, a 

study introduced a DNN-based approach (ANN and 

CNN). With these algorithms, smart grids can become 

more reliable and efficient [19-21]. Detecting faults in 

the network was done using measurements of current 

and voltage, which were pre-processed to identify 

characteristic changes in current and voltage signals. 

The proposed model's DNN algorithm in [22] can 

detect faults in medium or low-voltage transmission 
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systems as well as distribute systems. A data-driven 

model is proposed for identifying fault line identifiers, 

fault class types, and fault location estimators in smart 

grids using DNNs, including but not limited to ANNs 

and CNNs. The proposed data-driven model can detect 

a variety of fault types, including single-line to ground, 

double-line to-ground, and three-phase faults. As part 

of the proposed scheme, fault classes, faulty lines, and 

fault locations in the grid can be detected 

simultaneously. [23] eliminates preprocessing steps as 

in [24], feature engineering, and signal conversion, 

resulting in a more efficient method. In previous 

studies, voltage and current signals were converted 

into grayscale images or other transformations to 

extract meaningful features from signals. 

While fault location methods based on machine 

learning have shown to be effective in some 

simulation scenarios, their application is always 

hindered by the small fault data sets from practical 

transmission lines. With large data sets that have 

similar distributions, transfer learning can reach a fast 

convergence with a small set of data. For VSC-HVDC 

transmission lines, [25] proposed a transfer learning-

based fault location method and discussed its 

performance in different scenarios. As part of the 

method, stacked denoising auto-encoders are used to 

model the relationship between traveling waveforms 

and fault locations, and small data sets from the target 

transmission line are used to fine-tune the model. On 

a real-time digital simulation platform, [25] tests the 

proposed method with a simulated VSC-HVDC 

transmission line. 

It is often necessary to consider many aspects of the 

specific problem to be solved in order to obtain 

satisfactory results with data-driven methods, 

regardless of whether they are based on classical 

machine learning or deep learning [26]. For example, 

the number and accuracy of training samples, number 

of classes to be classified, and the degree of separation 

between classes all play a role. The classical machine 

learning classifiers and DNNs will become overfitted 

if there are too few training samples [27]. When a 

model is overfitted, it cannot generalize well to new 

data and is thus unable to perform its intended 

classification task effectively. In nuclear power plant 

equipment fault diagnosis and system accident 

identification studies, the lack of labeled training 

samples, i.e., experimental data with known fault or 

accident patterns, is a common problem because 

gathering sufficient training data is expensive, time-

consuming, or even impractical, especially for 

accidents. When data is lacking, models are usually 

unsatisfactory. 

For training and testing machine learning models in 

the nuclear industry, most published research uses 

simulation data instead of real fault or accident data. 

The accident data in [28] is collected from a system 

analysis software called PCTRAN (Micro-Simulation 

Technology - Nuclear Power Plant Simulation, n.d.) 

when authors use five machine learning models to 

identify accident classes in a pressurized water reactor. 

Similarly, [29] uses Boolean networks to identify 

faults in a modular high-temperature gas-cooled 

reactor, and the accident data come from a full-scale 

simulation. [27] proposes a DNN-based transfer 

learning approach to reconcile the strong dependence 

of machine learning models on data with the scarcity 

of real fault or accident data in nuclear power plants. 

By using limited data, it is possible to train machine 

learning models that can handle nuclear power plant 

classification problems. To minimize the number of 

labelled samples or computing time required for 

training in the target domain, transfer learning uses the 

knowledge of the related domain (called the source 

domain). To avoid manual feature selection, the 

proposed method uses a CNN as a carrier. 

As is evident, the existence of a small database may 

create limitations that can be referred to as weaknesses 

and study gaps in recent articles.  In this paper, we 

present a transfer learning-based CNN framework 

designed explicitly for fault classification with small 

databases. Our methodology involves training a CNN 

model on a large-scale dataset from a related domain 

and fine-tuning it for fault classification using a 

smaller, domain-specific dataset. By combining the 

powerful feature extraction capabilities of deep 

learning with the efficiency of transfer learning, our 

approach addresses the challenges of limited data 

availability while maintaining high classification 

accuracy. The proposed method offers a practical and 

scalable solution for fault classification, contributing 

to the broader adoption of deep learning techniques in 

resource-constrained scenarios. 

The remainder of this paper is organized as follows: 

Section 2 represents the formulation of the problem. 

Section 3 outlines the proposed methodology, 

including the CNN architecture and transfer learning 

strategy. Section 4 presents the simulation, results, and 

analysis. Finally, Section 5 concludes the paper and 

discusses potential directions for future research. 

2. Transfer learning formulation 

Transfer learning is a machine learning technique that 

leverages pre-trained models on large datasets to 

enhance learning efficiency on new, often smaller, 

datasets. Fine-tuning is a common approach within 

transfer learning where a pre-trained model is slightly 

adjusted to perform well on a new task. Instead of 

training a model from scratch, which requires 

significant data and computational resources, fine-
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tuning modifies the weights of a pre-trained model 

(typically from a related task) by continuing its 

training on the new dataset for a few more epochs. 

This approach helps to retain the knowledge already 

learned while adapting it to the new task. Fine-tuning 

is particularly beneficial in cases where labeled data is 

scarce. The basic formulation of fine-tuning in transfer 

learning can be expressed as follows: 

1. Pre-trained Model 𝑀𝑝𝑟𝑒−𝑡𝑟𝑎𝑖𝑛𝑒𝑑 : A model 

M trained on a large dataset 𝐷𝑙 𝑎𝑟𝑔 𝑒, where 

M has learned generalizable features. 

2. Fine-Tuning: Let 𝑀𝑓𝑖𝑛𝑒−𝑡𝑢𝑛𝑒𝑑 be the model 

that undergoes fine-tuning on a new dataset 

𝐷𝑁𝑒𝑤, where only a few layers or the entire 

model might be updated.                          

𝑀𝑓𝑖𝑛𝑒−𝑡𝑢𝑛𝑒𝑑 = 

𝐹𝑖𝑛𝑒𝑇𝑢𝑛𝑒(𝑀𝑝𝑟𝑒−𝑡𝑟𝑎𝑖𝑛𝑒𝑑 , 𝐷𝑁𝑒𝑤)      (1) 

3. Loss Function: The objective is to minimize 

the loss function L  on the new dataset: 

 

𝐿(𝑀𝑓𝑖𝑛𝑒−𝑡𝑢𝑛𝑒𝑑 , 𝐷𝑁𝑒𝑤) =
1

𝑁
∑ 𝐿𝑁

𝑖=1 (𝑦𝑖 , 𝑦̂𝑖)      (2)                   

where iy  is the true label and ˆ
iy  is the 

predicted output for each sample in NewD . 

4. Learning Rate: Fine-tuning typically 

involves using a lower learning rate 𝜂  to 

prevent overfitting and retain the model’s 

learned features: 

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 − 𝜂𝛻𝐿(𝜃𝑜𝑙𝑑 , 𝐷𝑁𝑒𝑤)      (3) 
where 𝜃𝑜𝑙𝑑  stand for the weights of the pre-trained 

model and 𝜃𝑛𝑒𝑤 are the adjusted weights after fine-

tuning. 

3. Proposed Methodology 

The proposed model consists of three parts: database 

generation, model training and online application. 

Figure 1 shows the general flowchart of the multi-

structure model.
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+
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Fig 1: Event detection model flowchart 

 

3.1. Data acquisition  
Creating a suitable database is the first step in training 

a model. In this section, a small database containing 

Generator Trip (GT), Line Outage (LO), Load 

Disconnection (LD), and fault events is constructed. 

To achieve this, power system events are applied, and 

time domain simulation is carried out. The rate of 

change of frequency (ROCOF) signal collected by 

phasor data concentrator (PDC) illustrates these 

variations more clearly than the frequency signal. 

Each of these events causes a sudden change in the 

system's frequency. The ROCOF equation is as 

follows: 

𝑅𝑂𝐶𝑂𝐹𝑡(𝑘) =
𝐹𝑡(𝑘−𝜏+1)−𝐹𝑡(𝑘)

𝑡(𝑘−𝜏+1)−𝑡(𝑘)
                         (4) 

where the value of ROCOF at timestamp k is indicated 

by ROCOFt(k); Ft(k) and τ are the frequency at 

timestamp k and time interval, respectively. At the end, 

the ROCOF signal is stored for each of events at 

different operating points and a corresponding label is 

assigned for classification. 
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3.2 Model training 
In this step, the CNN model is first trained with the 

CIFAR-10 large database. Then, with the small 

database generated for the related events, the 

classification model is built. The architecture of the 

proposed CNN model is depicted in Fig. 2. 
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Fig. 2: The architecture of the proposed CNN model 

 

There are two convolution layers in this study, two 

maxpooling layers, three fully connected layers for 

interpreting features, and one fully connected layer for 

predicting classes. The convolutional layers were 

constructed using kernels of size 3, and each activation 

block was based on the Rectified Linear Unit (ReLU). 

In the structure of CNN, the maximum value function 

is used to design the pooling layer, which has a pooling 

size and strides of 2 and 1, respectively. The batch 

normalization process has also been used to improve 

domain adaptation and learning convergence. After 

the dropout layer, the output is reshaped into one-

dimensional vectors using the flatten block before the 

densely connected classifier. Dropout was used to 

reduce overfitting before the flatten layer. The dense 

layers were activated using ReLU, while the output 

layer was classified using softmax. 

𝑦 = 𝑠𝑜𝑓𝑡 𝑚𝑎𝑥( 𝑤𝑑 × 𝑠 + 𝑏𝑑)                 (5)                                                 
In eq. (5), s represents the input of the softmax layer. 

Also, wd and bd are the weight and bias matrices that 

the assessment model must learn during training. 

An offline training involves training the CNN-based 

assessment model to minimize the difference between 

the predictions and the actual states, and determining 

the learning parameters. In order to accomplish this 

goal, a loss function and a learning parameter 

optimization algorithm are necessary. Model 

predictions and actual states are compared using the 

loss function, and the optimization algorithm attempts 

to reduce the loss function by iteratively updating the 

learning parameters. A number of studies have utilized 

the cross-entropy (CE) function for classification tasks, 

so it has been extensively utilized [30]. Adam's 

algorithm has been used to optimize CE in this work. 

It is an important algorithm in deep learning. 

In the proposed transfer approach for model training, 

the structure and parameters of the pre-trained model 

are transferred to the new classification model, and all 

layers are fine-tuned with a small database. In this case, 

the optimal parameters of the pre-trained model are 

selected as the initial parameters of the new model. 
𝑤′ = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒(𝑤𝑜𝑢𝑡 , 𝑤𝑙 , 𝑤𝑙−1, … , 𝑤1)                    (6) 

𝑏′ = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒(𝑏𝑜𝑢𝑡 , 𝑏𝑙 , 𝑏𝑙−1, … , 𝑏1)                  (7) 
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3.3 Online Application Stage 
In the online stage, the data measured by the PMUs are 

used as input to the model. Once the information about 

the PMUs is collected, they are entered into the trained 

model, whose optimal parameters have been 

determined during the offline training phase. Finally, 

the results of a power system are determined instantly. 

To assess the performance of the models, this paper 

examines their accuracy, F1-score, recall, and 

precision [31, 32].  

Phase 1: Pretraining on CIFAR-10 

The base CNN is trained on the CIFAR-10 dataset to 

develop strong feature extraction capabilities. This 

phase employs the following steps: 

1. Training Objective: The model minimizes 

the categorical cross-entropy loss. 

2. Optimization: The model parameters are 

updated  

Phase 2: Fine-tuning with Transfer Learning 

1. Model Modification: The pretrained CNN 

model is modified by adding two fully 

connected (FC) layers at the end to 

accommodate the specific fault classification 

task. The final architecture is structured as 

follows: 

o The convolutional layers from the 

pretrained model are frozen to retain 

the learned feature extraction 

capabilities. 

o The two new FC layers are 

initialized randomly. 

2. Fine-tuning Objective: The added layers are 

trained using the smaller fault classification 

dataset. 

3. Optimization: The fine-tuning process 

updates only the parameters of the new FC 

layers, while keeping the convolutional 

layers frozen. 

The training process can be summarized as follows: 

1. Train the base CNN on CIFAR-10 and save 

the pretrained model. 

2. Add two fully connected layers to the 

pretrained model for the fault classification 

task. 

3. Freeze the convolutional layers and fine-tune 

the new layers using the small fault 

classification dataset. 

4. Evaluate the model's performance using 

metrics such as accuracy and F1-score. 

This two-phase approach ensures that the model 

leverages the large-scale CIFAR-10 dataset for robust 

feature extraction, while efficiently adapting to the 

target domain with minimal additional data. 

 

4. Simulation results 
In order to analyze the efficiency of the proposed 

method, it has been implemented on the IEEE  39-bus 

system. The diagram of the studied system, which 

includes 10 generators, 46 transmission lines and 39 

buses, can be seen in Fig. 3. The simulation results for 

the proposed method have also been compared with 

LSTM and GRU. Table 1 shows the main parameters 

of CNN. Hyperparameters and transfer learning 

configurations were selected through trial and error. 

Digsilent Power Factory and Python have been used to 

develop the proposed method. 
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Fig. 3: The IEEE 39-bus system. 

Table 1. CNN structure and hyper-parameters . 

Layers Hyper-parameters 

Convolution Layer  Number of kernels:32 
Size of kernels: 3 
Strides: 1 

Pooling Layer (MaxPooling) Size of pooling:2 
Strides: 1 

Batch Normalization Layer - 

Convolution Layer Number of kernels:64 

Size of kernels: 3 

Strides: 1 

Pooling Layer (MaxPooling) Size of pooling:2 

Strides: 1 

Batch Normalization - 

Dropout dropout rate: 0.1 

Flatten - 

Dense 128 units 

Dense 64 units 

Dense 32 units 

Output Layer (Dense) 4 classifications 
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4.1 Generation of Original Small Database 
In this part of the study, a small original database for 

different operating conditions (OCs) is generated to train 

and evaluate the proposed model, as described in the 

following. The OCs are obtained by random sampling of 

the load within the range of its practical changes. 

Specifically, according to the base load level for each bus, 

random sampling of load changes is performed. The range 

of load changes is considered between 0.7 and 1.25 of the 

base load. Then, the generators' output power is calculated 

using the optimal power flow for each load level. 

Different OCs will be obtained as a result of this work. 

Then, labelling is performed according to the GT, LO, LD, 

and three-phase fault events.  In the next step, 80% of the 

OCs are randomly selected for training and 20% for 

testing. 

4.2 Performance testing of the proposed 

model 
In this section, the performance of the proposed model 

with and without transfer learning is examined and 

compared with the GRU and LSTM algorithms. Table 2 

shows the performance accuracy results of different 

models. As the results show, using transfer learning has 

increased the accuracy of the CNN-based model by 3.75%. 

Also, the proposed model has superior performance and 

achieved higher accuracy compared to the GRU and 

LSTM models. The performance accuracy of the 

proposed model is 3.67 % and 3.94 % higher than GRU 

and LSTM, respectively. The proposed model achieves 

high performance accuracy without the need for a large 

database, which is a prerequisite for excellent 

performance of DL-based models. However, data 

augmentation techniques that are commonly used to 

address the challenge of small databases cannot achieve 

high fidelity in data generation. Therefore, the proposed 

model can be used as an effective approach in practical 

applications. The proposed model's online computation 

time for each sample is 0.15 milliseconds, which is 

suitable for online applications. 

Table 2: Comparison of classifiers from accuracy point 

of view 

Classifier Accuracy (%) 

Proposed 99.44 

CNN 95.69 

LSTM 95.50 

GRU 95.77 

 

In order to better demonstrate the proposed model's 

superiority, its performance is further analysed based on 

other evaluation indicators, the results of which are shown 

in Table 3. Recall, Precision and F1-score for the 

proposed model are 99.32%, 99.65% and 99.53% 

respectively. The results show that the performance pf the 

proposed model based on transfer learning is much better 

than other models. 

Recall and precision represent false negatives and false 

positives. In this work, recall is less important than 

precision. This indicates that the model has more false 

negatives than false positives. Also, this work, the F1 

score is used as a suitable trade-off between recall and 

precision. It has a high value and indicates the proper 

performance of the proposed model.

 
Table 3: Comparison of different classifiers from viewpoints of statistical indicators  

Classifier Recall (%) Precision (%) F1-score (%) 

Proposed 99.32 99.65 99.53 

CNN 94.23 96.41 98.97 

LSTM 95.25 94.84 98.73 

GRU 96.91 95.42 96.16 

 

Finally, this section examines the effect of transfer 

learning on reducing database size. As shown in Fig. 4, 

the transfer learning-based CNN requires 750 samples for 

effective training. In this case, the accuracy of the model 

is 99.44%. While the CNN model without transfer 

learning reaches 99.44% accuracy with 1650 samples.  

This shows that transfer learning allows for training the 

model with a small database. In addition, it also reduces 

the update time if updates are needed. 

Fig. 4 :Impact of transfer learning on database size 

4.3 Performance test with renewable energy 

integration 
As renewable energy units continue to merge into the 

power grid, the dynamic characteristics of the system 

following disturbances grow increasingly complex. In 

order to assess the implications of renewable energy unit 

integration on the proposed methodology, this work 

examine its performance under varying rates of renewable 

energy penetration. The outcomes of these assessments 

are depicted in Table 4. 

Table 4: Performance of the proposed approach under 

different renewable energy penetration rates 

Penetrations rates (%) Accuracy (%) 

0 99.44 

10 99.31 

20 99.15 

30 99.15 
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The results of Table 4 show that the proposed model with 

the penetration of renewable energy sources also has a 

suitable and promising performance. However, with the 

influence of these sources, the accuracy of the model's 

performance has decreased, and the authors plan to 

examine this issue with more focus in future work. 
However, up to a penetration factor of 30%, the proposed 

model has achieved satisfactory accuracy and is robust. 

4.4 Performance with PMU missed data 
PMU information may be incomplete for various reasons, 

such as cyber-attacks, communication line interruptions, 

etc. In these conditions, data-driven models usually suffer 

from reduced accuracy. In this section, the performance 

of the proposed model for PMUs with missing data is 

examined. Fig. 5 shows the average accuracy of the model 

performance for different cases where part of the 5 PMU 

information is missing. As the results show, the model 

achieves an accuracy of 97.47% for the case where part of 

the 5 PMU information is missing, which is remarkable. 

Also, the model accuracy is higher for times when less 

PMU information is missed. It is important to note that 

given the importance of event classification, it is 

necessary to recover the missed PMU information. This 

topic is beyond the focus of this paper 

 
Fig. 5: Model performance with missing data 

4.5 Robustness Test under Noisy 

Environments 
Since noises are inevitable during the collection and 

transmission process of PMU data, the robustness of the 

proposed method is tested under noisy environments. 

Here, Gaussian white noises with different signal-to-noise 

ratios (SNRs) are added into the PMU data, where a 

smaller SNR indicates a higher noise level. Here, 3 

scenarios with SNRs 50 dB, 40 dB, and 30 dB are 

respectively tested in this section. It can be seen from 

Table 5 that although the assessment accuracy will is 

decreased slightly with the increase of the background 

noise level, it is always above 99.05% in various noise 

environments. 

Fig. 5: Accuracy of the proposed models for noisy data 

SNR Accuracy (%) 

50 99.35 

40 99.18 

30 99.05 

 

5. Conclusion 
This paper introduces a CNN-based method for data-

driven event classification of power systems, which 

solves the challenge of small database. For this purpose, 

transfer learning-based CNN has been used. In the 

proposed transfer learning approach, fine tuning of the 

entire model is applied. Using transfer learning has 

increased the accuracy of the model by 3.75%. The 

proposed model's accuracy was 99.44%. Recall, precision, 

and F1-score were recorded as 99.32%, 99.65%, and 

99.54%, respectively.  The proposed model shows a high 

accuracy of 99.05 against noisy data, indicating its 

robustness. Incomplete PMU data caused the model 

accuracy to drop by 1.97%. This drop in accuracy 

indicates that data recovery should be considered in this 

situation. PMU data recovery is a focus of the authors' 

future work. For this purpose, the authors use parallel 

models to achieve the least time delay in event 

classification. 

The performance of machine learning models when 

working with small and unbalanced datasets is 

challenging. A small dataset makes it difficult for the 

model to train well and obtain optimal parameters, and the 

imbalance causes the model to be biased towards the 

majority class. These challenges negatively affect the 

accuracy and robustness of the results. Therefore, the 

authors plan to address this challenge in future work. 
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