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This paper addresses sliding mode control (SMC) design for disturbed fractional-

order multi-vehicle networks in order to achieve containment tracking within a 

certain settling time.  The multi-leader case is investigated where the aim of the 

containment protocol design is that the states of the fractional-order followers 

eventually are placed inside a convex hull made by the states of the leaders. The 

convergence rate is designed such that achieving the containment tracking occurs 

in a fixed-time manner.  Unlike the previous works on finite-time containment 

control protocols of multi-agent systems, here, we offer a tractable design as the 

upper limit of the settling time of the convergence is achieved independent of the 

preliminary conditions of the vehicles' states. A novel SMC approach is proposed 

which enables the multi-vehicle network to reach the containment tracking at 

presence of the external disturbances. The numerical simulations reveal the 

correctness and effectiveness of the proposed theoretical approaches. 
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1. Introduction 

Multi-vehicle systems (MVSs) consisting of a number 

of vehicles (moving agents) that communicate with one 

another so as to reach the desired agreement on states or 

outputs, have absorbed abundant interest in various areas, 

for instance control of unmanned ground and aerial robots 

[1, 2], multi-satellite systems [3], cooperative dynamical 

games [4], aerial refueling and etc. In cooperative control 

of multi-vehicle systems, most of the results for all of the 

vehicles have considered integer-order dynamics [5-8]. 

However, vehicles with fractional-order dynamics 

collaborating with each other, have opened a new research 

topic in cooperative control of multi-vehicle systems.  In 

general, fractional-order systems which are capable of 
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characterizing complicated dynamics such as lossy 

transmission, viscoelasticity, heat conduction process, etc. 

have been under investigation during the last decade [9, 

10]. The key and important features of fractional order 

models are memory description and the non-local 

behavior [11]. When multiple vehicles such as drones, 

ground mobile robots, or underwater robots are placed in 

fully or partially viscous environments, they cannot be 

described by ordinary integer-order dynamics such as 

single or double integrators. Such multiple robotic 

systems which cooperate in viscous fluids can only be 

characterized with fractional-order dynamics. Viscosity 

of the fluid determines the fractional order of the 

dynamics of the vehicles [12, 13]. In the movement of the 
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robots in viscous areas, the leaders which are mostly 

equipped with high-quality sensors make a formation of 

convex hull, inside which the followers are placed. As the 

formation of the leaders move, the followers which are 

inside the convex hull as the safe area move along with 

the leaders provided that the containment protocol works 

well. Different scenarios of cooperative control have been 

implemented on fractional-order agents [14, 15]. In [16], 

the inverse-optimal consensus control were investigated 

in single-integrator multi-vehicle systems with Caputo 

and Grunwald-Letnikov fractional orders. In [ 17 ], a 

distributed event-based adaptive fuzzy consensus 

protocol was proposed for a class of nonlinear fractional-

order multi-vehicle systems. One of the challenging 

problems in cooperative control of is the multi-leader 

problem which is called containment tracking which has 

intrigued many researchers. Its main expected goal is that 

all the followers can reach the final position within the 

convex hull spanned by two or more leaders [18-20]. For 

example, in [21] necessary and sufficient conditions have 

been proposed for containment control under directed 

topologies with dynamic leaders. In [22], the containment 

tracking control of linear multi-vehicle systems with 

stochastic perturbations has been investigated where the 

convex hull formed by the leaders is stochastic and 

convergence to this hull has been guaranteed by the 

proposed algorithm. Additionally, in [23], a fixed-time 

containment tracking protocol has been suggested for 

multi-dimensional nonlinear multi-vehicle systems. In 

[24], the containment of fractional-order multi-vehicle 

systems with a directed communication topology was 

studied. In addition, [ 25 ] has discussed the output 

feedback fixed-time containment for nonlinear multi-

vehicle systems with switching graphs under unknown 

leader dynamics. In [26 ], observer-based containment 

control was investigated for an uncertain nonlinear multi-

vehicle systems through active disturbance rejection 

control and back-stepping approach. Other works such as 

[27] have considered practical implementation issues such 

as input saturation in the containment tracking of MVSs 

with unknown leader inputs. In [28], the formation of 

multi-vehicle systems with fractional order dynamics has 

been investigated by using the fixed-time Lyapunov 

stability theorem. It is suggested that the fixed-time 

formation tracking is achievable within a certain settling 

time.  

In the previous works, the results have been derived 

considering the fact that the dynamics are integer order 

integrators. In our paper, we consider fractional-order 

dynamics whose theory is different and can cover more 

advanced applications. This approach is a more general 

approach where the results can be reduced to integer-order 

dynamics. Thus, integer-order multi-agent systems can 

then be considered as a very special case of fractional-

order multi agent systems.  

 Additionally, previous papers have investigated the 

consensus of agents with the presence of one leader, while 

in our paper the convergence of agents with a specific 

formation with multiple leaders has been studied. We 

have also developed a novel SMC approach in order to 

design a suitable protocol to achieve containment and 

compensate for the external disturbances at the same time. 

The novelties and contributions of this paper are outlined 

below: 

• Unlike most previous containment protocol 

methods such as [25-27] which work for integer-order 

vehicles, the proposed approach in this paper studies 

fractional-order MVSs to design an SMC-based 

containment protocol. 

• On the other hand, asymptotic convergence of 

cooperative control protocols such as [ 29 , 30] cannot 

necessarily work well in practice, since they guarantee 

consensus and containment in infinite time rather than 

finite time. Even finite-time protocols suffer from an 

important drawback. The settling time in finite time 

approaches depends on the initial conditions of the 

vehicles’ states.  In myriad of cases, being aware of the 

preliminary conditions of the vehicles is not possible or 

not easily obtained, though. This encourages us to design 

a fixed-time approach where it is ensured that the settling 

time has an upper limit independent of the initial 

conditions. This approach provides the designers with a 

method, by following which, the desirable control 

performances are obtained at a certain time, which is 

independent of the preliminary conditions. 

 

2. Definitions 

The interactions among the vehicles in MVSs are 

described by graphs. Consider a group of 𝑁 +𝑀 vehicles 

including 𝑁 followers and 𝑀 leaders. The followers are 

labeled from  1 to 𝑁 while 𝑁 + 1 through 𝑁 +𝑀 are the 

labels of the leaders.  𝓕 = {1,2,⋯ ,𝑁}  contains the 

indices of the followers and 𝓛 = {𝑁 + 1,𝑁 + 2,⋯ ,𝑁 +
𝑀} includes those of the leaders. Suppose 𝒢 = (𝒱, ℰ,𝒜) 
is a graph that describes the interaction among the 

vehicles with 𝒱 = {𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑣𝑁+𝑀} being the set of 

𝑁 +𝑀 nodes of 𝒢 and ℰ = {𝜀𝑖𝑗 = (𝑣𝑖 , 𝑣𝑗)} ⊆ 𝒱 × 𝒱 the 

set of its edges. The set of neighbors for vehicle 𝑖  is 

specified by 𝑁𝑖 = {𝑗 ∶  (𝑣𝑖 , 𝑣𝑗) ∈ 𝒱, 𝑖 ≠ 𝑗} . The 

adjacency matrix 𝒜 = [𝑎𝑖𝑗] ∈ ℝ
(𝑁+𝑀)×(𝑁+𝑀) is defined 

for the graph  𝒢  with non-negative elements 𝑎𝑖𝑗  where 

𝑎𝑖𝑗 > 0 if  𝜀𝑖𝑗 ∈ ℰ, and 𝑎𝑖𝑗 = 0 if 𝜀𝑖𝑗 ∉ ℰ. The Laplacian 

matrix of 𝒢  is introduced as 𝐿 = [𝑙𝑖𝑗] ∈ ℝ
(𝑁+𝑀)×(𝑁+𝑀) 

with  𝑙𝑖𝑗 = −𝑎𝑖𝑗  for 𝑖 ≠ 𝑗 and 𝑙𝑖𝑖 = ∑ 𝑎𝑖𝑗
𝑁
𝑗=1,𝑗≠𝑖 .  

Definition 1 [31]. The definition of Reimann-Liouville 

fractional integral and derivative is given as follows: 

𝐷𝜌𝑓(𝑡) =

{
 
 

 
 

1

𝛤(−𝜌)
∫ (𝑡 − 𝜏)−𝜌−1𝑓(𝜏)𝑑(𝜏),         𝜌 < 0
𝑡

𝑎
 

𝑓(𝑡)                                                         𝜌 = 0
 

𝐷𝑛[ 𝐷𝑡
𝜌−𝑛𝑓(𝑡)𝑎

 ],                                𝜌 > 0

 , 

with 𝛤(. ) the Gamma function and 𝑛 specifying the first 

integer larger than 𝜌 . 𝐷𝜌𝑓(𝑡)  indicates the derivative 

operator for 𝜌 > 0, and the fractional integral for 𝜌 < 0. 

For 𝜌 = 1 , the fractional derivative is reduced to time 

derivative of order 1. Similarly, for other integer numbers 

as 𝜌 = 𝑛, higher order time-derivatives are obtained. 

Lemma 1 [32]. The following inequalities are true for 

non-negative real numbers in the form of 𝑦1, 𝑦2 , … , 𝑦𝑁: 

1. if 0 < 𝑘 < 1, then ∑ 𝑦𝑖
𝑘𝑁

𝑖=1 ≥ (∑ 𝑦𝑖
𝑁
𝑖=1 )𝑘. 

2. if 𝑘 > 1, then ∑ 𝑦𝑖
𝑘𝑁

𝑖=1 ≥ 𝑁1−𝑘(∑ 𝑦𝑖
𝑁
𝑖=1 )𝑘. 
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Definition 2 [33]. Consider a system described as �̇� =
𝑓(𝑥), 𝑓(0) = 0, with the origin as the equilibrium point, 

where 𝑥 ∈ ℝ𝑛 and 𝑓(𝑥) is a nonlinear function. Provided 

that the origin is globally finite-time stable, it is fixed-time 

stable and the settling-time function 𝑇(𝑥0) is limited, i.e., 

∃𝑇𝑚𝑎𝑥 > 0: 𝑇(𝑥0) ≤ 𝑇𝑚𝑎𝑥 , ∀ 𝑥0 ∈ ℝ
𝑛. 

Definition 3 [34 ]. Convexity for a set 𝐾 ⊂ ℝ𝑞×1  is 

achieved when (1 − 𝛾)𝜐 + 𝛾𝜔 ∈ 𝐾 for 𝜐, 𝜔 ∈ 𝐾 and 𝛾 ∈
[0,1]. Similarly, the convex hull spanned by the points 

𝑧𝑖 ∈ ℝ
𝑞×1, 𝑖 = 1,2, … ,𝑚  is defined as 

𝐶𝑜{𝑧1, 𝑧2, … , 𝑧𝑚} = {∑ 𝛼𝑖𝑧𝑖
𝑚
𝑖=1 |𝛼𝑖 ∈ ℝ, 𝛼𝑖 ≥

0,∑ 𝛼𝑖
𝑚
𝑖=1 = 1}  where 𝐶𝑜(. )  is the standard way of 

denoting the convex hull in  literature (e.g. see [35]). 

Lemma 2 [36]. Consider the differential equation �̇� =

−𝛼𝑟
𝑚

𝑛 − 𝛽𝑟
𝑝

𝑞,     𝑟(0) = 𝑟0  , where 𝛼  and 𝛽  are positive 

real values, and 𝑚, 𝑛, 𝑝 and 𝑞 are positive odd integers. 

Also 𝑛 < 𝑚 and 𝑝 < 𝑞 are valid. The equilibrium point 

of this system is fixed-time stable and the settling time has 

the upper bound of 
1

𝛼(
𝑚

𝑛
−1)

+
1

𝛽(1−
𝑝

𝑞
)
 . 

To make it easier to use Lemma 2, 𝑚 and 𝑛 are taken as 

2𝑞 − 𝑝 and 𝑞, respectively. In this case, condition 𝑛 < 𝑚 

is also fulfilled. 

 

3. Problem formulation 

Assume that there is a group of 𝑁 identical vehicles 

with 𝑀  (𝑀 < 𝑁)  followers and 𝑁 −𝑀  leaders. Define 

the followers set by 𝓕 = {1,2, … ,𝑀} and leaders set by 

𝓛 = {𝑀 + 1,𝑀 + 2,… ,𝑁}. If an agent has no neighbors, 

it is called a leader. The fractional-order dynamics of the 

followers and the leaders  will be explained as follows: 

𝐷𝜌𝑥𝑖(𝑡) = 𝑢𝑖(𝑡),     𝑖 = 1,2, … , 𝑁 ,  (1) 
where 0 < 𝜌 < 1  is the fractional order. If 𝜌 = 1 , the 

dynamics will reduce to integer order single integrators. 

Furthermore, 𝑥𝑖 ∈ ℝ
𝑀 is the state of the agent 𝑖 and 𝑢𝑖 is 

the control input of the follower 𝑖 ∈ 𝓕 and the leader 𝑖 ∈
𝓛. We will consider the leaders with zero input and non-

zero input. The Laplacian matrix 𝐿 with 𝐿1 ∈ 𝑅
𝑀×𝑀 and 

𝐿2 ∈ 𝑅
𝑀×(𝑁−𝑀) is defined as: 

𝐿 = [
𝐿1 𝐿2

0(𝑁−𝑀)×𝑀 0(𝑁−𝑀)×(𝑁−𝑀)
] . 

Assumption 1. The Laplacian matrix is assumed to be 

fixed. It is also assumed that the interaction graph consists 

of  a spanning tree. 

Assumption 2. There is one leader at least for each 

follower that has a directed path to that follower. 

Lemma 3 [37]. Assumption 2 suggests that all the 

eigenvalues of 𝐿1 are positive and each entry of −𝐿1
−1𝐿2 

is nonnegative. The summation of the entries on each row 

of −𝐿1
−1𝐿2 is 1. 

Assumption 3. The leader control inputs are limited by a 

constant value 𝜂 > 0, satisfying ‖𝑢𝑖(𝑡)‖ ≤ 𝜂,   𝑖 = 𝑀 +
1,𝑀 + 2,… ,𝑁. 

Let 𝑥𝑓 = [𝑥1
𝑇 , 𝑥2

𝑇 , … , 𝑥𝑀
𝑇 ]𝑇  and 𝑥𝑙 =

[𝑥𝑀+1
𝑇 , 𝑥𝑀+2

𝑇 , … , 𝑥𝑁
𝑇]𝑇. Determine the global containment 

error as: 

𝜉 ≔ 𝑥𝑓 + (𝐿1
−1𝐿2⨂𝐼𝑛)𝑥𝑙 ,  (2) 

where 𝜉 = [𝜉1
𝑇 , 𝜉2

𝑇 , … , 𝜉𝑀
𝑇 ]𝑇 and ⨂ denotes the Kronecker 

product. We have: 

𝜉𝑖 = 𝑥𝑖 + ∑ 𝑘𝑖𝑗𝑥𝑀+𝑗
𝑁−𝑀
𝑗=1  ,  (3) 

for each 𝑖 ∈ 𝓕 where 𝑘𝑖𝑗 is the (𝑖, 𝑗)th element of 𝐿1
−1𝐿2 

satisfying: 

−𝑘𝑖𝑗 ≥ 0, ∑ −𝑘𝑖𝑗
𝑁−𝑀
𝑗=1 =1. (4) 

Thus, if 𝜉𝑖 → 0  as 𝑡 → ∞ , then we have 𝑥𝑖 →
∑ −𝑘𝑖𝑗𝑥𝑀+𝑗
𝑁−𝑀
𝑗=1 . It also shows that follower 𝑖 converges 

with coefficients −𝑘𝑖𝑗 ,   𝑗 = 1,2, … , 𝑁 −𝑀 to the convex 

hull constructed by the leaders. Then, we consider 𝜉 as the 

containment error. In other words, the control input for the 

followers is designed to force the states of the followers 

to go towards the convex hull, denoted by 

(−(𝐿1
−1𝐿2)⨂𝐼𝑛)𝑥𝑙. According to Definition 3, the states 

of the leaders construct this convex hull 

(𝐶𝑜{𝑥𝑀+1
𝑇 , 𝑥𝑀+2

𝑇 , … , 𝑥𝑁
𝑇}). 

Remark 1. Applying the fractional-order Reimann-

Liouville derivative of order 𝜌 (given in Definition 1) to 

(3) we obtain: 

𝐷𝜌𝜉𝑖 = 𝐷
𝜌(𝑥𝑖 + ∑ 𝑘𝑖𝑗𝑥𝑀+𝑗

𝑁−𝑀
𝑗=1 ) = 𝐷𝜌𝑥𝑖 +

∑ 𝑘𝑖𝑗𝐷
𝜌𝑥𝑀+𝑗

𝑁−𝑀
𝑗=1 = 𝑢𝑖 + ∑ 𝑘𝑖𝑗𝑢𝑀+𝑗

𝑁−𝑀
𝑗=1  .  (5) 

In order to make (5) simpler, we define: 

𝜔𝑐𝑖 ≔ −∑ 𝑘𝑖𝑗𝑢𝑀+𝑗
𝑁−𝑀
𝑗=1 ,   𝑖 = 1,2, … ,𝑀 .  (6) 

Then we have: 

𝐷𝜌𝜉𝑖 = 𝑢𝑖 − 𝜔𝑐𝑖  .  (7) 
The compact form of the containment error (7) is as 

follows: 

𝐷𝜌𝜉 = 𝑢 − 𝜔𝑐  .   (8) 
here 𝑢 = [𝑢1

𝑇 , 𝑢2
𝑇 , … , 𝑢𝑀

𝑇 ]𝑇  and 𝜔𝑐 =
[𝜔𝑐1

𝑇 , 𝜔𝑐2
𝑇 , … , 𝜔𝑐𝑀

𝑇 ]𝑇 . 
 

 

4. Containment Tracking of Fractional-order MVSs 

Consider the MVS given in (1).  We propose the 

sliding function as: 

𝑠𝑖 = 𝐷
𝜌−1𝜉𝑖 + 𝐷

𝜌−2 [𝛼1𝑠𝑖𝑔(𝜉𝑖)
2𝑞1−𝑝1
𝑞1 +

𝛽1𝑠𝑖𝑔(𝜉𝑖)
𝑝1
𝑞1] ,     𝑖 ∈ {1,2, … ,𝑀} ,  (9) 

where 𝑠𝑖𝑔(∙)𝑘 = |∙|𝑘𝑠𝑖𝑔𝑛(∙) with |∙|𝑘 being the element-

wise absolute value of vector to the power of 𝑘, and the 

parameters 𝛼1  and 𝛽1  are positive real numbers, and 𝑝1 

and 𝑞1 are positive odd integers that satisfy 𝑝1 < 𝑞1. Thus 
2𝑞1−𝑝1

𝑞1
≥ 1 and 

𝑝1

𝑞1
≤ 1. Also, since 0 < 𝜌 < 1, then 𝜌 −

1and 𝜌 − 2 denote fractional integration. At the sliding 

surface: 

𝑠𝑖 = 0 → 𝐷𝜌−1𝜉𝑖 = −𝐷𝜌−2 [𝛼1𝑠𝑖𝑔(𝜉𝑖)
2𝑞1−𝑝1
𝑞1 +

𝛽1𝑠𝑖𝑔(𝜉𝑖)
𝑝1
𝑞1] , (10) 

Also, we have: 

𝐷𝜌𝜉𝑖 = −𝐷
𝜌−1 [𝛼1𝑠𝑖𝑔(𝜉𝑖)

2𝑞1−𝑝1
𝑞1 + 𝛽1𝑠𝑖𝑔(𝜉𝑖)

𝑝1
𝑞1]  →

�̇� = 0 ,  (11) 
Theorem 1. The containment tracking error system (11) 

is fixed-time stable and the upper limit is given by the 

following expression: 

𝑇1 ≤ (
1

𝛼1𝑁

𝑝1−𝑞1
𝑞1

 +
1

𝛽1
)

𝑞1

𝑞1−𝑝1
 , (12) 

where 𝑝1 < 𝑞1. 

Proof. Taking into account the Lyapunov 

function  𝑉1(𝑡, 𝑥(𝑡)) = ∑ |𝜉𝑖|
𝑁
𝑖=1  with 𝑥 ∈ 𝑅𝑁  and 

calculating the integer-order derivative of 𝑉1(𝑡, 𝑥(𝑡)), we 

obtain: 

https://doi.org/10.48308/ijrtei.2025.238781.1076
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�̇�1 = ∑ 𝑠𝑖𝑔𝑛(𝜉𝑖)𝜉�̇�
𝑁
𝑖=1 = ∑ 𝑠𝑖𝑔𝑛(𝜉𝑖)𝐷

1−𝜌𝐷𝜌𝜉𝑖
𝑁
𝑖=1   

According to (11), it is achieved: 

�̇�1 = −∑ 𝑠𝑖𝑔𝑛(𝜉𝑖)𝐷
1−𝜌𝐷𝜌−1 [𝛼1𝑠𝑖𝑔(𝜉𝑖)

2𝑞1−𝑝1
𝑞1 +𝑁

𝑖=1

𝛽1𝑠𝑖𝑔(𝜉𝑖)
𝑝1
𝑞1] = −∑ 𝑠𝑖𝑔𝑛(𝜉𝑖) [𝛼1𝑠𝑖𝑔(𝜉𝑖)

2𝑞1−𝑝1
𝑞1 +𝑁

𝑖=1

𝛽1𝑠𝑖𝑔(𝜉𝑖)
𝑝1
𝑞1] = −∑ 𝑠𝑖𝑔𝑛(𝜉𝑖) [𝛼1𝑠𝑖𝑔𝑛(𝜉𝑖)|𝜉𝑖|

2𝑞1−𝑝1
𝑞1 +𝑁

𝑖=1

𝛽1𝑠𝑖𝑔𝑛(𝜉𝑖)|𝜉𝑖|
𝑝1
𝑞1] = −∑ [𝛼1|𝜉𝑖|

2𝑞1−𝑝1
𝑞1 + 𝛽1|𝜉𝑖|

𝑝1
𝑞1]𝑁

𝑖=1 =

−∑ [𝛼1|𝜉𝑖|
2𝑞1−𝑝1
𝑞1 + 𝛽1|𝜉𝑖|

𝑝1
𝑞1]𝑁

𝑖=1 = −𝛼1∑ |𝜉𝑖|
2𝑞1−𝑝1
𝑞1𝑁

𝑖=1 −

𝛽1∑ |𝜉𝑖|
𝑝1
𝑞1𝑁

𝑖=1    

Considering Lemma 1, the above equation yields: 

�̇�1 ≤ −𝛼1𝑁
1−

2𝑞1−𝑝1
𝑞1 (∑ |𝜉𝑖|

𝑁
𝑖=1 )

2𝑞1−𝑝1
𝑞1 − 𝛽1(∑ |𝜉𝑖|

𝑁
𝑖=1 )

𝑝1
𝑞1 =

−𝛼1𝑁
𝑝1−𝑞1
𝑞1 𝑉1

2𝑞1−𝑝1
𝑞1 − 𝛽1𝑉1

𝑝1
𝑞1   

Using Lemma 2 in the above inequality with 𝛼 =

𝛼1𝑁
𝑝1−𝑞1
𝑞1 , 𝛽 = 𝛽1, 𝑝 = 𝑝1 , 𝑞 = 𝑞1 , we obtain (12) 

which completes the proof. ■ 

The sliding mode containment control law is 

presented as follows: 

𝑢𝑖 = 𝜔𝑐𝑖 − 𝐷
𝜌−1 (𝛼1𝑠𝑖𝑔(𝜉𝑖)

2𝑞1−𝑝1
𝑞1 +

𝛽1𝑠𝑖𝑔(𝜉𝑖)
𝑝1
𝑞1) − (𝛼2𝑠𝑖𝑔(𝑠𝑖)

2𝑞2−𝑝2
𝑞2 + 𝛽2𝑠𝑖𝑔(𝑠𝑖)

𝑝2
𝑞2) ,  (13) 

where the parameters 𝛼1, 𝛽1, 𝛼2 and 𝛽2 are positive real 

numbers, and 𝑝1, 𝑞1, 𝑝2 and 𝑞2 are positive odd integers. 

Also 𝑝1 < 𝑞1 and 𝑝2 < 𝑞2. 

The compact form (13) becomes: 

𝑢 = 𝜔𝑐 − 𝐷
𝜌−1 (𝛼1𝑠𝑖𝑔(𝜉)

2𝑞1−𝑝1
𝑞1 + 𝛽1𝑠𝑖𝑔(𝜉)

𝑝1
𝑞1) −

(𝛼2𝑠𝑖𝑔(𝑆)
2𝑞2−𝑝2
𝑞2 + 𝛽2𝑠𝑖𝑔(𝑆)

𝑝2
𝑞2) , (14) 

where 𝑢 = [𝑢1
𝑇 , 𝑢2

𝑇 , … , 𝑢𝑀
𝑇 ]𝑇 and 𝑆 = [𝑠1

𝑇 , 𝑠2
𝑇 , … , 𝑠𝑀

𝑇 ]𝑇. 

Theorem 2. If for a MVS in the form of (1) the sliding 

function (9) holds, the control law (13) can solve the 

containment tracking problem for these systems with the 

settling time as follows: 

𝑇2 ≤ (
1

𝛼2
 +

1

𝛽2
)

𝑞2

𝑞2−𝑝2
 , (15) 

where 𝑝2 < 𝑞2. 

Proof. Suppose the Lyapunov function as follows: 

𝑉2(𝑡, 𝑥(𝑡)) = |𝑆|, (16) 
where 𝑥 ∈ 𝑅𝑁 . Calculating the time derivate of 

𝑉2(𝑡, 𝑥(𝑡)), we obtain: 

�̇�2 = 𝑠𝑖𝑔𝑛(𝑆)�̇� = 𝑠𝑖𝑔𝑛(𝑆) (𝐷𝜌𝜉 +

𝐷𝜌−1 [𝛼1𝑠𝑖𝑔(𝜉)
2𝑞1−𝑝1
𝑞1 + 𝛽1𝑠𝑖𝑔(𝜉)

𝑝1
𝑞1]) . (17) 

Substituting (8) into (17), we obtain the following: 

�̇�2 = 𝑠𝑖𝑔𝑛(𝑆) (𝑢 − 𝜔𝑐 + 𝐷
𝜌−1 [𝛼1𝑠𝑖𝑔(𝜉)

2𝑞1−𝑝1
𝑞1 +

𝛽1𝑠𝑖𝑔(𝜉)
𝑝1
𝑞1]) . 

Substituting (14) in the above equation yields: 

�̇�2 = −𝑠𝑖𝑔𝑛(𝑆) (𝛼2𝑠𝑖𝑔(𝑆)
2𝑞2−𝑝2
𝑞2 + 𝛽2𝑠𝑖𝑔(𝑆)

𝑝2
𝑞2) =

−𝑠𝑖𝑔𝑛(𝑆) (𝛼2𝑠𝑖𝑔𝑛(𝑆)|𝑆|
2𝑞2−𝑝2
𝑞2 + 𝛽2𝑠𝑖𝑔𝑛(𝑆)|𝑆|

𝑝2
𝑞2) =

−𝛼2|𝑆|
2𝑞2−𝑝2
𝑞2 − 𝛽2|𝑆|

𝑝2
𝑞2 = −𝛼2𝑉2

2𝑞2−𝑝2
𝑞2 − 𝛽2𝑉2

𝑝2
𝑞2  . 

Using Lemma 2 in the above inequality with 𝛼 = 𝛼2,
𝛽 = 𝛽2, 𝑝 = 𝑝2 and 𝑞 = 𝑞2, we obtain (15). ■ 

Remark 2. Consider fractional MVSs introduced in (1) 

with the sliding function (9). We can conclude from 

Theorem 1 and Theorem 2 that the containment control 

protocol (13), will cause the containment error to 

converge to zero within a fixed time, with the upper limit 

of: 

𝑇 = 𝑇1 + 𝑇2 ≤ (
1

𝛼1𝑁

𝑝1−𝑞1
𝑞1

 +
1

𝛽1
)

𝑞1

𝑞1−𝑝1
+ (

1

𝛼2
 +

1

𝛽2
)

𝑞2

𝑞2−𝑝2
 . (18) 

Remark 3. The preceding equations can be extended to 

the case that the states of the vehicles are vectors rather 

than scalars via Kronecker product.  

Remark 4. From (18), it is obvious that  𝑝1 < 𝑞1 and 

𝑝2 < 𝑞2  must be satisfied to achieve fixed-time 

containment. The other parameters, i.e. 𝛼1, 𝛼2, 𝛽1 and 𝛽2 

along with 𝑝1 , 𝑝2 , 𝑞1  and 𝑞2 can be selected with the 

designer’s choice to obtain the desired upper bound for 

the settling time 𝑇 in (18). Additionally, the mentioned 

parameters also appear in the control signal (13) which 

means that any change in the settling time necessitates 

making changes to the control signal. It is clear that a 

trade-off between the settling time and smoothness of the 

control signal might be necessary to obtain fixed-time 

stability along with acceptable performance.  

 

5. Formation-Containment of Fractional-order 

MVSs 

In order to obtain a solution for the formation-

containment problem, a continuous function is defined as 

ℎ(𝑥𝑖) = 𝑥𝑖 − ℎ𝑖
𝐹 where the desired movement of vehicle 

𝑖 is ℎ𝑖
𝐹 . For ℎ𝑖

𝐹 = 0, the protocol will be a containment 

algorithm. If ℎ𝑖
𝐹  is time-invariant, the sliding function (9) 

and the protocol given in (13) will bring about formation-

containment.  

The followers are described with (1). If the 

containment error for containment is (3), then we can 

define it for formation-containment as: 

𝜉𝑖 = ℎ(𝑥𝑖) + ∑ 𝑘𝑖𝑗 (ℎ(𝑥𝑀+𝑗))
𝑁−𝑀
𝑗=1 = 𝑥𝑖 − ℎ𝑖

𝐹 +

∑ 𝑘𝑖𝑗(𝑥𝑀+𝑗 − ℎ𝑀+𝑗
𝐹 )𝑁−𝑀

𝑗=1  . (19) 
Also, the derivation of (19) is: 

𝐷𝜌𝜉𝑖 = 𝐷
𝜌(𝑥𝑖 − ℎ𝑖

𝐹 + ∑ 𝑘𝑖𝑗(𝑥𝑀+𝑗 − ℎ𝑀+𝑗
𝐹 )𝑁−𝑀

𝑗=1 ) =

𝐷𝜌𝑥𝑖 − 𝐷
𝜌ℎ𝑖

𝐹 + ∑ 𝑘𝑖𝑗𝐷
𝜌𝑥𝑀+𝑗

𝑁−𝑀
𝑗=1 −

∑ 𝑘𝑖𝑗𝐷
𝜌ℎ𝑀+𝑗

𝐹𝑁−𝑀
𝑗=1 = 𝑢𝑖 − 𝐷

𝜌ℎ𝑖
𝐹 + ∑ 𝑘𝑖𝑗𝑢𝑀+𝑗

𝑁−𝑀
𝑗=1 −

∑ 𝑘𝑖𝑗𝐷
𝜌ℎ𝑀+𝑗

𝐹𝑁−𝑀
𝑗=1  . (20) 

In order to simplify (20), we can define: 

𝜔ℎ𝑖 ≔ −∑ 𝑘𝑖𝑗𝐷
𝜌ℎ𝑀+𝑗

𝐹𝑁−𝑀
𝑗=1 ,   𝑖 = 1,2, … ,𝑀 .  (21) 

According to (6), (21) and (20) we obtain: 

𝐷𝜌𝜉𝑖 = 𝑢𝑖 − 𝐷
𝜌ℎ𝑖

𝐹 − 𝜔𝑐𝑖 + 𝜔ℎ𝑖  , (22) 
and the compact form of the (22) is as follows: 

𝐷𝜌𝜉 = 𝑢 − 𝐷𝜌ℎ𝐹 −𝜔𝑐 + 𝜔ℎ , (23) 

where ℎ𝐹 = [ℎ1
𝐹𝑇 , ℎ2

𝐹𝑇 , … , ℎ𝑀
𝐹 𝑇]

𝑇

. For the formation-

containment problem, the protocol will be: 

𝑢𝑖 = 𝐷
𝜌ℎ𝑖

𝐹 +𝜔𝑐𝑖 −𝜔ℎ𝑖 −

𝐷𝜌−1 (𝛼1𝑠𝑖𝑔(𝜉𝑖)
2𝑞1−𝑝1
𝑞1 + 𝛽1𝑠𝑖𝑔(𝜉𝑖)

𝑝1
𝑞1) − (24) 
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(𝛼2𝑠𝑖𝑔(𝑠𝑖)
2𝑞2−𝑝2
𝑞2 + 𝛽2𝑠𝑖𝑔(𝑠𝑖)

𝑝2
𝑞2) . 

The compact form of (24) becomes: 

𝑢 = 𝐷𝜌ℎ𝐹 + 𝜔𝑐 − 𝜔ℎ − 𝐷
𝜌−1 (𝛼1𝑠𝑖𝑔(𝜉)

2𝑞1−𝑝1
𝑞1 +

𝛽1𝑠𝑖𝑔(𝜉)
𝑝1
𝑞1) − (𝛼2𝑠𝑖𝑔(𝑆)

2𝑞2−𝑝2
𝑞2 + 𝛽2𝑠𝑖𝑔(𝑆)

𝑝2
𝑞2) . (25) 

Theorem 3. For the MVS (1) with the proposed 

protocol (24) and a formation-containment vector ℎ(𝑥𝑖), 
the formation-containment with the settling time upper 

limited by (15) is achievable. 

Proof. Considering the Lyapunov function (16) and 

substituting (23) into (17), we obtain the following: 

�̇�2 = 𝑠𝑖𝑔𝑛(𝑆) (𝑢 − 𝐷𝜌ℎ𝐹 − 𝜔𝑐 +𝜔ℎ +

𝐷𝜌−1 [𝛼1𝑠𝑖𝑔(𝜉)
2𝑞1−𝑝1
𝑞1 + 𝛽1𝑠𝑖𝑔(𝜉)

𝑝1
𝑞1]) . 

Substituting (25) in the above equation yields: 

�̇�2 = −𝑠𝑖𝑔𝑛(𝑆) (𝛼2𝑠𝑖𝑔(𝑆)
2𝑞2−𝑝2
𝑞2 + 𝛽2𝑠𝑖𝑔(𝑆)

𝑝2
𝑞2) =

−𝑠𝑖𝑔𝑛(𝑆) (𝛼2𝑠𝑖𝑔𝑛(𝑆)|𝑆|
2𝑞2−𝑝2
𝑞2 + 𝛽2𝑠𝑖𝑔𝑛(𝑆)|𝑆|

𝑝2
𝑞2) =

−𝛼2|𝑆|
2𝑞2−𝑝2
𝑞2 − 𝛽2|𝑆|

𝑝2
𝑞2 = −𝛼2𝑉2

2𝑞2−𝑝2
𝑞2 − 𝛽2𝑉2

𝑝2
𝑞2  . 

Using Lemma 2 in the above inequality with 𝛼 = 𝛼2,
𝛽 = 𝛽2, 𝑝 = 𝑝2 and 𝑞 = 𝑞2, the (15) is obtained and the 

proof is complete. ■ 

Remark 5. Assume a MVS in (1) and the sliding 

function (9). It is resulted from Theorem 1 and Theorem 

3 that the vehicles converge to a certain formation-

containment with the control law of (24) and the error 

system will be fixed-time stable. 

Remark 6. The proposed containment protocol possesses 

the properties of anti-disturbance and robustness to 

uncertainties which have been inherited from SMC 

approach. Note that the sliding surface presented in (9) is 

a class of integral sliding mode surface where adding the 

fractional integration of errors into the sliding surface 

leads to a much better anti-disturbance characteristics. In 

(9), 𝐷𝜌−2 denotes fractional integration with the order of 

2 − 𝜌 which reduces to classical integrator for 𝜌 = 1. 

Remark 7. The use of a sign function can contribute to 

chattering in control systems. Numerous methods have 

been suggested to cope with this issue such as introducing 

a dead-band or hysteresis around the control value. 

Although sign function has been employed in the control 

protocol (13), since the fractional integrator 𝐷𝜌−1 appears 

in the control signal, it acts as a low-pass filter which 

results in a quite smooth control signal.  
 

Remark 8. When robots cooperate with each other in 

complex environments such as viscous fluids, the integer 

order dynamics such as first order dynamics cannot 

describe the motion of the robot accurately. For example, 

consider first order integer dynamics for robots as 

𝐷𝜌𝑥𝑖(𝑡) = 𝑢𝑖(𝑡),     𝑖 = 1,2, … , 𝑁  where 𝜌 = 1 and 𝑁 is 

the number of agents. If x𝑖(𝑡) is the position of the robot 

along a specific axis, then 𝑢𝑖(𝑡) is the velocity of the robot 

along the same axis. This is true in normal environments. 

However, when the environment is viscous, the velocity 

of the robot does not equal the first-order derivative of the 

position. In fact, the velocity will be the fractional 

derivative of the position which is denoted by 𝐷𝜌𝑥𝑖(𝑡) =

𝑢𝑖(𝑡), 𝑖 = 1,2, … , 𝑁  where 𝜌 is not an integer anymore 

and it is defined according to the viscosity of the fluid. 

When multiple robots cooperate in such environments, the 

dynamics of the agents are best modeled by fractional-

order dynamics. In the movement of the robots in viscous 

areas, the leaders which are mostly equipped with high-

quality sensors make a formation of convex hull, inside 

which the followers are placed. As the formation of the 

leaders move, the followers which are inside the convex 

hull as the safe area move along with the leaders provided 

that the containment protocol works well. 

 

 

6. Formation-Containment of Fractional-order 

MVSs with External Disturbance 

Supposed that the fractional-order dynamics of the 

followers with external disturbances is as follows: 

𝐷𝜌𝑥𝑖(𝑡) = 𝑢𝑖(𝑡) + 𝛿𝑖(𝑡),     𝑖 ∈ {1,2, … ,𝑀} ,  (26) 
where 𝛿𝑖 ∈ 𝑅

𝑛  refers to the external disturbance of 

vehicle 𝑖. The leaders are supposed to be in the form of 

(1). 

Assumption 4. We assume that the external disturbance 

denoted by 𝛿𝑖(𝑡)  satisfies |𝛿𝑖(𝑡)| ≤ 𝛾𝑖 . As a result, its 

compact form can be written as |𝛿(𝑡)| ≤ 𝛾. 

Thus for the disturbed system given in (26), the fractional 

derivative of (19) is: 

𝐷𝜌𝜉𝑖 = 𝐷
𝜌(𝑥𝑖 − ℎ𝑖

𝐹 + ∑ 𝑘𝑖𝑗(𝑥𝑀+𝑗 − ℎ𝑀+𝑗
𝐹 )𝑁−𝑀

𝑗=1 ) =

𝐷𝜌𝑥𝑖 − 𝐷
𝜌ℎ𝑖

𝐹 + ∑ 𝑘𝑖𝑗𝐷
𝜌𝑥𝑀+𝑗

𝑁−𝑀
𝑗=1 −

∑ 𝑘𝑖𝑗𝐷
𝜌ℎ𝑀+𝑗

𝐹𝑁−𝑀
𝑗=1 = 𝑢𝑖 + 𝛿𝑖 − 𝐷

𝜌ℎ𝑖
𝐹 +

∑ 𝑘𝑖𝑗(𝑢𝑀+𝑗 + 𝛿𝑀+𝑗)
𝑁−𝑀
𝑗=1 −∑ 𝑘𝑖𝑗𝐷

𝜌ℎ𝑀+𝑗
𝐹𝑁−𝑀

𝑗=1 = 𝑢𝑖 +

𝛿𝑖 − 𝐷
𝜌ℎ𝑖

𝐹 + ∑ 𝑘𝑖𝑗𝑢𝑀+𝑗
𝑁−𝑀
𝑗=1 + ∑ 𝑘𝑖𝑗𝛿𝑀+𝑗

𝑁−𝑀
𝑗=1 −

∑ 𝑘𝑖𝑗𝐷
𝜌ℎ𝑀+𝑗

𝐹𝑁−𝑀
𝑗=1  . (27) 

In order to simplify (27), we can define: 

𝜔𝛿𝑖 ≔ −∑ 𝑘𝑖𝑗𝛿𝑀+𝑗
𝑁−𝑀
𝑗=1 ,   𝑖 = 1,2, … ,𝑀 .  (28) 

According to (6), (21), (28) and (27), we have: 

𝐷𝜌𝜉𝑖 = 𝑢𝑖 + 𝛿𝑖 − 𝐷
𝜌ℎ𝑖

𝐹 − 𝜔𝑐𝑖 − 𝜔𝛿𝑖 +𝜔ℎ𝑖  , (29) 
and the compact form of the (29) is as follows: 

𝐷𝜌𝜉 = 𝑢 + 𝛿 − 𝐷𝜌ℎ𝐹 − 𝜔𝑐 − 𝜔𝛿 +𝜔ℎ . (30) 
The formation-containment control law by considering 

the external disturbances, is proposed as: 

𝑢𝑖 = 𝐷
𝜌ℎ𝑖

𝐹 +𝜔𝑐𝑖 −𝜔ℎ𝑖 − 𝐷
𝜌−1 (𝛼1𝑠𝑖𝑔(𝜉𝑖)

2𝑞1−𝑝1
𝑞1 +

𝛽1𝑠𝑖𝑔(𝜉𝑖)
𝑝1
𝑞1) − (𝛼2𝑠𝑖𝑔(𝑠𝑖)

2𝑞2−𝑝2
𝑞2 + 𝛽2𝑠𝑖𝑔(𝑠𝑖)

𝑝2
𝑞2) −

𝛾𝑖𝑠𝑖𝑔𝑛(𝑠𝑖) , (31) 
where the parameters 𝛼1 , 𝛽1 , 𝛼2  and 𝛽2  are positive real 

values, and 𝑝1 , 𝑞1 , 𝑝2  and 𝑞2  are positive odd integers 

satisfying 𝑝1 < 𝑞1 and 𝑝2 < 𝑞2. 

The compact form of (31) becomes: 

𝑢 = 𝐷𝜌ℎ𝐹 + 𝜔𝑐 − 𝜔ℎ − 𝐷
𝜌−1 (𝛼1𝑠𝑖𝑔(𝜉)

2𝑞1−𝑝1
𝑞1 +

𝛽1𝑠𝑖𝑔(𝜉)
𝑝1
𝑞1) − (𝛼2𝑠𝑖𝑔(𝑆)

2𝑞2−𝑝2
𝑞2 + 𝛽2𝑠𝑖𝑔(𝑆)

𝑝2
𝑞2) −

𝛾𝑠𝑖𝑔𝑛(𝑆). (32) 
Theorem 4. The control protocol (31) guarantees 

achieving formation-containment with the sliding 

function (9) for the vehicles with the dynamics of 

fractional order with disturbance given in (26). The upper 

bound of the settling time has been proposed in (15). 

Proof. With the Lyapunov function (16) and substituting 

(30) into (17), we obtain the following: 
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�̇�2 = 𝑠𝑖𝑔𝑛(𝑆) (𝑢 + 𝛿 − 𝐷𝜌ℎ𝐹 − 𝜔𝑐 − 𝜔𝛿 + 𝜔ℎ +

𝐷𝜌−1 [𝛼1𝑠𝑖𝑔(𝜉)
2𝑞1−𝑝1
𝑞1 + 𝛽1𝑠𝑖𝑔(𝜉)

𝑝1
𝑞1]) . 

Substituting (32) in the above equation yields: 

�̇�2 = 𝑠𝑖𝑔𝑛(𝑆) (𝛿 − 𝜔𝛿 − 𝛾𝑠𝑖𝑔𝑛(𝑆) −

(𝛼2𝑠𝑖𝑔(𝑆)
2𝑞2−𝑝2
𝑞2 + 𝛽2𝑠𝑖𝑔(𝑆)

𝑝2
𝑞2)) = 𝑠𝑖𝑔𝑛(𝑆)(𝛿 − 𝜔𝛿 −

𝛾𝑠𝑖𝑔𝑛(𝑆)) − 𝑠𝑖𝑔𝑛(𝑆) (𝛼2𝑠𝑖𝑔(𝑆)
2𝑞2−𝑝2
𝑞2 +

𝛽2𝑠𝑖𝑔(𝑆)
𝑝2
𝑞2) = −(𝛾 − 𝑠𝑖𝑔𝑛(𝑆)𝛿 + 𝑠𝑖𝑔𝑛(𝑆)𝜔𝛿) −

𝑠𝑖𝑔𝑛(𝑆) (𝛼2𝑠𝑖𝑔𝑛(𝑆)|𝑆|
2𝑞2−𝑝2
𝑞2 + 𝛽2𝑠𝑖𝑔𝑛(𝑆)|𝑆|

𝑝2
𝑞2) ≤

−(𝛾 − |𝛿| + |𝜔𝛿|) − 𝛼2|𝑆|
2𝑞2−𝑝2
𝑞2 − 𝛽2|𝑆|

𝑝2
𝑞2  . 

According to Assumption 4 and |𝜔𝛿| ≥ 0, then 𝛾 − |𝛿| +
|𝜔𝛿| ≥ 0 and we obtain: 

�̇�2 ≤ −𝛼2|𝑆|
2𝑞2−𝑝2
𝑞2 − 𝛽2|𝑆|

𝑝2
𝑞2 = −𝛼2𝑉2

2𝑞2−𝑝2
𝑞2 − 𝛽2𝑉2

𝑝2
𝑞2  . 

Based on Lemma 2, it is achieved that: 

{
𝛼 = 𝛼2   𝑎𝑛𝑑   𝛽 = 𝛽2

 
𝑝 = 𝑝2   𝑎𝑛𝑑   𝑞 = 𝑞2 

 . 

Then we obtain (15) which completes the proof. ■ 

 

7. Simulations Results with fixed Leaders 

When robots cooperate with each other in complex 

environments such as viscous fluids, dynamics of integer 

orders cannot describe the motion of the robot accurately. 

For example, consider first order integer dynamics for 

robots as 𝐷𝜌𝑥𝑖(𝑡) = 𝑢𝑖(𝑡),     𝑖 = 1,2, … , 𝑁  where 𝜌 = 1 

and 𝑁 is the number of vehicles. If x𝑖(𝑡) is the position of 

the robot along a specific axis, then 𝑢𝑖(𝑡) is the velocity 

of the robot along the same axis. This is true in normal 

environments. However, when the environment is viscous, 

the velocity of the robot does not equal the first-order 

derivative of the position. In fact, the velocity will be the 

fractional derivative of the position which is denoted by 

𝐷𝜌𝑥𝑖(𝑡) = 𝑢𝑖(𝑡),     𝑖 = 1,2, … , 𝑁   (as defined in (1)) 

where 𝜌  is not an integer anymore and it is defined 

according to the viscosity of the fluid. When multiple 

robots cooperate in such environments, the dynamics of 

the vehicles are best modeled by fractional-order 

dynamics. Some numerical simulations are supplied to 

confirm the theoretical results in this section. Assume a 

fractional-order MVS consisting of seven vehicles 

described by (1) as explained above. The vehicle 

interaction topology is displayed in Fig. 1 where the labels 

of followers are {1,2,3,4,5} and the labels of the leaders 

are {6,7}. The Laplacian matrix is as follows: 

 

𝐿 =

[
 
 
 
 
 
 
   1   − 1        0        0        0        0        0
   0        2   − 1        0        0        0  − 1
   0        0        1        0  − 1        0        0
−1        0        0        1        0        0        0
   0        0        0   − 1        2  − 1        0
   0        0        0        0        0        0        0
   0        0        0        0        0        0        0]

 
 
 
 
 
 

 , 

 

where 𝐿1 and 𝐿2 are as: 

 

𝐿1 =

[
 
 
 
 
   1   − 1        0        0        0
   0        2   − 1        0        0
   0        0        1        0  − 1
−1        0        0        1        0
   0        0        0   − 1        2]

 
 
 
 

   ,   𝐿2 =

[
 
 
 
 
     0        0
     0   − 1
     0        0
     0        0
  −1        0]

 
 
 
 

 . 

 

The preliminary conditions of the followers are 

selected as 𝑥0 = [−3,2, −1.5,4.5, −1,0.5, −0.5] . The 

parameters of (13) are 𝛼1 = 𝛼2 = 𝛽1 = 𝛽2 =2, 𝑝 = 7 , 

and 𝑞 = 9 for each protocol and the fractional order is 

selected as 𝜌 = 0.9 for all of the simulations. Also, the 

upper limit of the settling time according to (18), is 

calculated as 𝑇𝑓𝑖𝑥𝑒𝑑−𝑡𝑖𝑚𝑒 = 9.96 . 

First, we investigate the containment tracking of the 

vehicles with the proposed approach. Achieving 

containment for each state variable is displayed in Fig. 2. 

In this figure the first states of the vehicles (positions 

along x axis) have been depicted. Fig. 3 illustrates that the 

containment error goes to zero in a fixed-time.  The 

sliding function is also displayed in Fig. 4. According to 

these figures, the containment tracking has been achieved 

in a time which is upper limited by the obtained settling 

time 𝑇𝑓𝑖𝑥𝑒𝑑−𝑡𝑖𝑚𝑒  and it is independent of the initial states. 

 

 
Fig. 1. The topology of the vehicle interaction. 

 

 
Fig. 2. Containment of the vehicles. 

 

 
Fig. 3. Containment errors. 
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Fig. 4. Sliding function. 

 

Next, we examine the performance of the formation-

containment algorithm. The goal is achieving time-

invariant and time-variant sinusoidal formations given as 

ℎ𝑖
𝐹 = 0.2 𝑐𝑜𝑠(𝜋 +

𝑘𝑖𝜋

7
) , 𝑘𝑖 = {1,2, … ,7}  and ℎ𝑖

𝐹 =

0.2 𝑐𝑜𝑠(𝜋𝑡 +
𝑘𝑖𝜋

7
), 𝑘𝑖 = {1,2, … ,7} for all seven vehicles. 

Fig. 5 and Fig. 6 show how the states of the vehicles 

converge with the prescribed formations. The upper limit 

of the settling time remains the same as before 

(𝑇𝑓𝑖𝑥𝑒𝑑−𝑡𝑖𝑚𝑒). It is concluded from these figures that the 

vehicles can perfectly maintain their formation-

containment in the calculated fixed-time as well as 

converge to the convex hull formed by the leaders' states. 

 

 
Fig. 5. Formation-containment with 𝒉𝒊

𝑭 = 𝟎. 𝟐 𝒄𝒐𝒔(𝝅+
𝒌𝒊𝝅

𝟕
). 

 

 
Fig. 6. Formation-containment with  𝒉𝒊

𝑭 = 𝟎. 𝟐 𝒄𝒐𝒔(𝝅𝒕 +
𝒌𝒊𝝅

𝟕
). 

 

Then, we investigate the performance of the 

containment algorithm in presence of external disturbance. 

The parameters are considered the same as before and the 

disturbances applied to the vehicles at the instant of 5 

seconds are: 

𝑤1 = 0.1 𝑐𝑜𝑠(7𝑡) , 𝑤2 = 0.3 𝑐𝑜𝑠(6𝑡 +
𝜋

2
) , 𝑤3 =

0.1 𝑐𝑜𝑠(5𝑡), 𝑤4 = 0.3 𝑐𝑜𝑠(4𝑡 −
𝜋

2
) , 𝑤5 = 0.1 𝑐𝑜𝑠(3𝑡), 

 𝑤6 = 0.3 𝑐𝑜𝑠(2𝑡 +
𝜋

2
) , 𝑤7 = 0.1 𝑐𝑜𝑠(𝑡). 

In addition, with the given disturbances, the parameter 𝛾  

is equal to 1. The containment is achieved within the same 

settling time upper bounded by 𝑇𝑓𝑖𝑥𝑒𝑑−𝑡𝑖𝑚𝑒 . Fig. 7 and 

Fig. 8 illustrate the containment error and the formation-

containment error for the disturbed MVS, respectively. 

The formation-containment is selected time-variant 

similar to the previous simulation. We can conclude 

according to these figures that the vehicles have perfectly 

achieved containment in presence of disturbances. 

 

8. Simulations Results with Dynamic Leaders 

All simulations are the same as the previous section 

with minor differences. The dynamics of the leaders are 

selected as 𝑢6 = 𝑐𝑜𝑠(𝑡)  and 𝑢7 = 𝑠𝑖𝑛(2𝑡) . The 

containment of the vehicles is displayed in Fig. 9. Also, 

Fig. 10 shows the containment errors which converge to 

zero in a fixed time. In order to illustrate that the proposed 

method also works in larger networks, 30 followers with 

two dynamic leaders with 𝑢 = 𝑐𝑜𝑠(5𝑡)  and 𝑢 = 𝑠𝑖𝑛(𝑡) 
have been tested and the results are depicted in Fig. 11. 

As it is shown, the states of the 30 followers stay in the 

convex hull made by the leaders’ states and the 

containment has been achieved. In addition, the 

simulation of applying the proposed protocol to the 

formation-containment problem is displayed in Fig. 12 

and Fig. 13 with two different formations.  

 
Fig. 7. Containment error of vehicles with external 

disturbance. 
 

 
Fig. 8. Formation-containment error of vehicles with 

external disturbance. 
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Fig. 9. Containment with dynamic leaders. 
 

 
Fig. 10. Containment error with dynamic leaders. 

 

 
Fig. 11. Containment in a large network with 30 

followers and two dynamic leaders. 

 
Fig. 12. Formation-containment with dynamic leaders 

and 𝒉𝒊
𝑭 = 𝟎. 𝟐 𝒄𝒐𝒔(𝝅 +

𝒌𝒊𝝅

𝟕
). 

 

 
Fig. 13. Formation-containment with dynamic leaders 

and 𝒉𝒊
𝑭 = 𝟎. 𝟐 𝒄𝒐𝒔(𝝅𝒕 +

𝒌𝒊𝝅

𝟕
). 

 
 

Finally, to illustrate the convergence to the convex 

hull, we consider a different interaction topology with 

four followers and three leaders as shown in Fig. 14. The 

followers have been labeled by {1,2,3,4} and the label of 

leaders are {5,6,7}. The Laplacian matrix is as follows: 

𝐿 =

[
 
 
 
 
 
 
   2   − 1        0        0        0  − 1        0
   0        2   − 1        0        0       0   − 1
   0        0        1   − 1        0       0        0
−1        0        0        2   − 1       0        0
   0        0        0        0        0        0        0
   0        0        0        0        0        0        0
   0        0        0        0        0        0        0]

 
 
 
 
 
 

 , 

and the two-dimensional preliminary conditions of the 

followers are selected as: 

𝑥0 = [(−3,1.5), (2,2.5), (−1.5, −4), (4.5, −5),
(−1,−0.5), (0.5,1), (−0.5,0.5)] , 

and the dynamics of the leaders are selected as 𝑢5 =
2𝑠𝑖𝑛(𝑡), 𝑢6 = 𝑐𝑜𝑠(𝑡) and 𝑢7 = 𝑠𝑖𝑛(2𝑡). Fig. 15 shows 

the containment tracking results with dynamic leaders 

where the positions of the leaders and the followers along 

x and y axes are shown on the x-y plane at different times. 

It is illustrated that the containment tracking is fully 

achieved in 1.5 seconds. These figures were depicted in 

1.5 seconds, every 0.3 of which is displayed until the 

agents have converged. It is seen that a moving convex 

hull is successfully made by the 3 leaders, and the 4 

followers are contained in the convex hull. 

 

 
Fig. 14. The new interaction topology of the vehicles. 

 

  

  

  
Fig. 15. Containment tracking with moving convex hull. 

 
9. Conclusions 

This article addresses achieving containment for 

fractional order MVSs with multiple leaders within a 

certain settling time. We proposed a novel SMC protocol 

where the states of the followers move to the convex hull 

spanned by the leaders’ states. The novelty of the SMC 
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approach proposed in this paper lies in the fact that the 

convergence time of the containment achievement is not 

affected by the initial conditions of the vehicles’ states. 

Since the upper bound of the settling time can be tubed by 

the designer, a remarkable merit has been achieved from 

practical point of view. Additionally, the external 

disturbances were very well dealt with. The results in this 

paper have been presented for fractional-order MVSs 

which means that the results can also be applied to 
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