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This paper proposes a method for processing motor imagery-based 

Electroencephalography (EEG) signals to generate precise signals for Brain-

Computer Interface (BCI) devices used in rehabilitation and physical treatments. 

BCI research is mainly used in neuroprosthetic applications to help improve 

disabilities. We analyze EEG data from seven healthy individuals using 59-

channel caps. The signals are down-sampled to 100 Hz after pre-processing to 

remove artifacts and noise by using Filter Bank Common Spatial Patterns 

(FBCSP). EEG features are extracted using the Fisher Discriminant Ratio (FDR). 

A comprehensive comparison of classification methods is conducted, 

encompassing statistical techniques, machine learning algorithms, and neural 

network-based models. Specifically, Linear Discriminant Analysis (LDA) and K-

Nearest Neighbors (KNN) are evaluated as statistical classifiers; Support Vector 

Machine (SVM) is used for the machine learning approach; and Radial Basis 

Function (RBF), Probabilistic Neural Network (PNN), and Extreme Learning 

Machine (ELM) are explored as neural network models. Model performance is 

validated using K-fold cross-validation and confusion matrix analysis. Among all 

evaluated classifiers, the ELM model—implemented as a single-layer neural 

network—demonstrates superior classification accuracy, suggesting its strong 

potential for real-time BCI applications in neurorehabilitation. 
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1. Introduction 

Brain-computer interface (BCI) research has significantly 

advanced in recent years, with a primary focused on 

neuroproteins applications aimed to restoring lost 

functions such as vision, hearing and movement as well 

as assisting in the rehabilitation of individuals [1]. Brain 

activity can be monitored through various neuroimaging 

invasive and non-invasive techniques [2]. Among the 

non-invasive techniques, EEG has emerged as one of the 

most widely used due to its high temporal resolution, 

affordability, and ease of use [3]. 

EEG signals play a crucial role in diagnosis and treatment 

of neurological and neurodegenerative disorders [4]. 

However, despite their clinical importance, EEG 
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recordings are often contaminated by various artifacts and 

noise sources which significantly compromise signal 

quality and hinder accurate interpretation [5]. The primary 

sources of the artifact are muscular activities, blinking of 

eyes during the signal acquisition procedure, and power 

line electrical noise [6]. Many signal processing methods 

have been introduced to mitigate these artifacts [7], 

including regression [8], blind source separation [9], and 

FBCSP [10]. 

In addition to pre-processing, the extraction and 

classification of EEG features are fundamental steps in 

EEG signal analysis. Although EEG signals inherently 

contain neural information, this data must be effectively 

categorized to be meaningful and actionable. Many 
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studies have been devoted to improving EEG 

classification techniques. For instance, Khosla et al. [11] 

conducted a comparative analysis of EEG signal 

processing and classification approaches, while Lotte et 

al. [12] provided a comprehensive review of classification 

algorithms used in BCI systems. More recently, Aggarwal 

et al. [13] and Altaheri et al. [14] have explored machine 

learning and deep learning models, respectively, to 

enhance EEG classification accuracy. All these works 

produce precise, reliable, and accurate signals [15]–[17].  

Various classification strategies have been applied in this 

domain, including statistical approaches, machine 

learning techniques, and neural network-based models. 

As for statistical methods, LDA [18] and KNN algorithm 

[19] can be mentioned. LDA makes models of the 

probability density function and KNN assigns a feature 

vector to a class based on its nearest neighbours [20]. 

Based on machine learning methods, Genetic Algorithm 

(GA) [21], Inductive Logic Procedures (ILP) [22], and 

SVM [23] are widely used for EEG classification. For 

example, Lokman et al. proposed a feature selection 

method based on GA to identify optimal features for 

decoding finger movement-related EEG signals [24]. 

Methods such as RBF neural network [25], ELM [26], and 

PNN [27] can be considered as the main neural network 

algorithms used for EEG classification.  

In this study, EEG signals from seven healthy subjects are 

pre-processed using FBCSP to reduce noise and artifacts. 

Feature selection is performed using the FDR method, and 

the trials are classified using three approaches: a statistical 

classifier, a machine learning-based method, and a neural 

network-based model.  Classification performance is 

evaluated using cross-validation (K-fold) and confusion 

matrices. Notably, the one-layer neural network 

demonstrates superior performance compared to the other 

methods. 

The findings of this study highlight the importance of 

selecting an appropriate classification algorithm for 

accurate EEG signal decoding. In particular, the results 

suggest that the ELM algorithm is a highly effective and 

efficient choice for classifying simple EEG signals due to 

its strong performance and generalization ability. 
 

2. Experimental Procedures 

In this section, the experimental steps of EEG signal 

processing are discussed, from the initial stage of raw data 

collection and pre-processing, to the separation of 

frequency ranges necessary for rehabilitation and physical 

treatments, and finally to the feature extraction stage, 

which prepares the EEG signal for classification purposes. 

The classification approaches will be discussed in detail 

in Section 3. Figure 1 shows the overall block diagram of 

EEG signal processing. 

 
Fig. 1. Overall EEG signal processing. 

2.1. Subjects and EEG Recordings 

In this study, EEG signal has been collected from seven 

healthy individuals using a 59-channel cap, resulting in 59 

EEG signals extracted from different points of the head. 

The signals were band-passed, filtered with a frequency 

between 0.05 and 200 Hz , and digitized at 1000 Hz with 

16 bits. Recordings were performed using Brain-Amp MR 

plus amplifiers and an Ag/AgCl electrode cap. In this 

work, data were collected based on the data presented in 

[28]. 

 

2.2. Pre-processing  

When collecting EEG signals from the brain, the 

electrodes used may interfere with each other and 

generate noise in the signals. Additionally, the data 

collected from the brain may not originate directly from 

it, which is known as artifacts. These artifacts can be 

physiological, generated from parts other than the brain, 

or non-physiological, caused by external factors. Proper 

pre-testing or examination design measures can help 

reduce physiological artifacts. Therefore, EEG signals 

may be contaminated by noise and artifacts from external 

sources, requiring pre-processing to remove them. To 

achieve this, we used the common average reference 

filter. This filter eliminates common noise across all 

electrodes, such as power-line interference, by subtracting 

the average signal from all channels, and emphasizes 

actual local brain activity while reducing bias from a 

single physical reference electrode. This filter functions 

as an upper-bound filter and is formulated as follows.  

1

1
( ) ( ) ( )

C

CAR

i i j

j

x t x t x t
C =

= −                                                (1)  

where 
CAR

ix  is the value of the signal after going through 

the filter, ix  is the initial value of the signal, and C is the 

number of channels and electrodes. 

 

2.3. Frequency decomposition  

After removing the destructive effects of noise and 

artifacts from the EEG signals, which was done in the pre-

processing step, these signals were divided into different 

frequency bands using FBCSP. FBCSP is a tool that 

automatically identifies the most discriminating 

frequency bands of EEG signals for tasks such as motion 

imagery classification. By combining these bands with 

spatial filtering, the accuracy of the BCI is significantly 

increased. The FBCSP algorithm combines the filter bank 

framework with the CSP algorithm. Therefore, using the 

CSP algorithm, from each frequency band, the EEG data 

are spatially filtered, and using a mutual information-

based criterion, the most distinctive features are selected. 

The FBCSP algorithm consists of the following steps:  

1- Spectral filtering: In this step, the EEG data is 

decomposed to nine equal bandwidths by using a filter 

bank. The higher frequencies (20Hz - 40Hz) can be used 

for rehabilitation and physical treatment purposes. These 

frequencies are derived experimentally.  

2- Spatial filtering: This step uses the CSP algorithm to 

separate the data having coverage over each other and 
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divide them into two groups. Considering 
n s

bx R 

representing single-trial EEG going through the thb  band-

pass filter, where s and n are the number of measurement 

samples and, the number of channels, respectively. The 

CSP matrix linearly converts bx  to bZ  spatially filtered 

as follows:                                                                

b b bZ W x=                                                                       (2)  

where bW  indicates the CSP matrix, and it is calculated by 

solving the following eigenvalue decomposition problem:    

                            ,1 ,1 ,2( )b b b b bC W C C W D= +                                             

(3) 

where ,1bC  and ,2bC  are the average covariance matrices 

of the band-pass EEG signal, and D is the diagonal matrix 

containing 
1

,1 ,2 ,1( )b b bC C C−+  eigenvalues. Usually, to filter 

spatially, only the highest and lowest eigenvalues, which 

are the first and the last m  rows ,bW  are used as the most 

discriminative filters.  

3- The m  pairs of CSP features corresponding to the thi  

trial from the thb  filter are derived as:

, ,

,

, ,

( )
log .

( )
=

T

b i b i

b i T

b i b i

diag Z Z
f

tr Z Z
                                                   (4) 

1 2

,

m

b if R   and ,b iZ  are the first and the last m  row of the 

.bZ  Due to using the nine frequency bands, the thi  trial 

feature vector is:    

1, 9, 1 18[ ,..., ] .=i i i mF f f                                                          (5) 

Remark 1. We selected 2,=m  which means that two 

pairs of spatial filters are used.   

Using this algorithm, we obtained a set of features that 

are ready to be processed by a classifier; however, it is 

necessary to select a subset of these features that are more 

effective on the signal characteristics. FDR is an effective 

feature selection method, which we will discuss in the 

next sub-section. 

 

2.4. Selection of the most valuable features 

After the extraction of the trial feature matrix, choosing 

the most valuable features is vital, and to do so, the FDR 

algorithm is used as follows: 
2

1 2

1 2

( )m m
FDR

S S

−
=

−
                                                         (6) 

where, 1m  and 2m  are the average of the features between 

class 1 and class 2, and 1S  and 2S  are their variance. By 

calculating the FDRs, they can be organized, and then the 

largest FDR indicates the signal with the most valuable 

feature. 

 

3. Classification Approaches 

In the previous section, the pre-processing and processing 

steps of the signal were discussed, and the most valuable 

features were extracted. By extracting the valuable data, 

the EEG signals are ready for classification. For this aim, 

three approaches, including statistical techniques, 

machine learning, and neural networks are used, and each 

approach is explained in more detail in the following 

section. 

 

3.1. Statistics approaches 

Statistical approaches are generally characterized by a 

probabilistic model that, rather than providing a 

classification, they calculate the probability of belonging 

to each class. Two main algorithms are used as statistical 

approaches in this work which are LDA and KNN, which 

are further defined as follows: 

1- Linear Discriminant Function Analysis: The 

basic idea behind this method is to determine if the groups 

are different based on the mean of a variable and then use 

that variable to predict group membership. In other words, 

in LDA, the primary purpose is to seek those linear 

features that reduce the dimensionality and 

simultaneously preserve class separability [15]. 

2-   K-Nearest algorithm: This method is a nonparametric 

approach classifying a given data point based on the 

majority of its neighbours. It consists of two main steps: 

first, finding the number of nearest neighbours, and 

second, classifying the data point in a specific class [17]. 

 

3.2. Machine learning approaches 

Machine learning mainly focuses on automated 

computational methods by learning a task from several 

examples. The goal of machine learning when it comes to 

classification purposes is to create classified expressions 

that can be understood by humans easily. As with 

statistical approaches, background knowledge may be 

used in development, but operations are performed 

without human intervention.  

The algorithm used in this paper regarding the machine 

learning approach is SVM. SVM is used to construct the 

optimal hyperplane with the most significant margin for 

separating data between two groups. For our two-

dimensional data, a single hyperplane is enough to divide 

the data into two groups. Therefore, we use a kernel with 

a linear function in SVM to transform the data into a space 

where the two groups are linearly separated. 

 

3.3. Neural Network approaches 

Generally, a neural network consists of layers of 

interconnected nodes where every single node generates a 

nonlinear function of its input. To mimic human 

intelligence, neural network methods combine statistical 

techniques with machine learning. Since, this is 

performed unconsciously, there is no accompanying 

capability to clarify the learned concepts to the user [29]. 

The standard neural network algorithms used in this work 

are RBF, PNN, and ELM, where each can be defined as 

follows: 

1- Radial Basis Function Networks: This network consists 

of three layers, with the middle (hidden) layer nodes being 

Gaussian functions. RBF networks are feed-forward and 

are good candidates for approximation problems, since 
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they have faster learning capabilities compared to other 

feed-forward networks [23]. 

2- The Probabilistic Neural Network: PNN can be seen as 

a reformulation of kernel discriminant analysis. When 

there is an input, the first layer calculates the distance 

between the information and the input vector using 

learning. The second layer creates a probabilistic vector, 

and finally, a transfer function in the output of the second 

layer is constructed by choosing the highest probability 

and a positive value for the goal class, and a negative 

value for other classes is assigned [25]. 

3- Extreme Learning Machine: The obligation to repeat 

the neural network approaches makes the algorithms 

extremely slow; however, ELM has a single hidden layer 

on its structure and can select the input weights and 

hidden layer basis randomly and a much faster learning 

speed and better performance are obtained since it can 

reduce the risk of network being trapped in local optima 

[24]. In the simulations, we considered the ELM structure 

with one hidden layer consisting of 15 nodes. 

Table 1 is provided to compare the mentioned 

classification algorithms and examine the advantages and 

disadvantages of each method. 

Table 1- Comparing the classification algorithms  

Classification 

method 
Advantages Disadvantages 

KNN 

- simple,  

- no training phase, 

- suitable for non-

linear data, [30] 

- slow prediction,  

- poor scalability with 

data, 

- sensitive to noise and 

feature scaling,  

- poor for high-

dimensional EEG, [12] 

LDA 

- fast training and 

prediction,  

- high 

interpretability, 

- suitable for limited 

data, [31] 

- Assuming the limitation 

of linear separability of 

the data and their 

Gaussianity 

- fails in complex 

nonlinear EEG patterns, 

[32] 

SVM 

- resistant to 

overfitting, 

- efficient for 

nonlinear EEG 

signals, 

- high accuracy, [33] 

- slow to train (does not 

scale well with data), 

- sensitive to 

hyperparameters, 

- difficult to interpret, 

[34] 

RBF 

- superiority for 

complex nonlinear 

features of EEG 

signals, [35] 

- extremely slow training, 

- sensitive to the 

parameter of step size, 

- probability of 

overfitting, [36] 

PNN 

- fast prediction, 

- noise-resistant, 

- providing 

probabilistic 

outputs, 

 [37] 

- memory-based (stores 

all training data), 

- slow training with large 

datasets, 

- less scalable, [38] 

ELM 

- extremely fast 

training (single-step 

computation), 

- scalability, 

- efficient for small 

data sets, 

- efficient for real-

time BCI, [39] 

- low interpretability 

(black-box model), 

- sensitive to initial 

random weights, 

- underfit probability for 

highly complex features, 

[40] 

 

 

4. Validation Methods 

In order to validate the three approaches studied in the 

previous section, we use two methods for validating the 

results: the K-fold algorithm and the table of confusion. 

In the K-fold method, all subsets except one- used in the 

testing phase for validation- are used for training. This 

method is repeated K times (K-fold), where each subset is 

used once for testing. Then, the cross-validation algorithm 

compares the result of the test classifier with the state of 

the original test features for validation, and this method is 

repeated several times, each time transmitting a vector 

into the test classifier. Finally, the results are averaged to 

produce a single overall classification accuracy, as 

follows [41]: 
max

1max

1 ( )
[ ] 100%

k

correct

k total

M k
accuracy

k M=

=                             (7) 

where totalM  is the total number of vectors to be classified, 

( )correctM k  is the number of correct vectors in k  iteration, 

and maxk  is the number of folds.  

The confusion table method is a table with two rows and 

two columns that reports the number of true positives, 

false negatives, false positives, and true negatives. This 

method provides a more accurate analysis than the K-fold 

method, especially when the data set is unbalanced. For 

evaluating the confusion matrix, one of the most 

informative measures is the Matthews correlation 

coefficient (MCC) [42]. 

 

5. Results  

     In this section, the accuracy of the results obtained 

from three classification techniques, including statistical, 

artificial intelligence, and neural network are calculated 

and then validated using the K-fold method and the 

confusion matrix. The outcomes of these approaches are 

compared, and the most suitable algorithm is selected. 

Various metrics such as sensitivity, specificity, precision, 

negative predictive value, MCC, F1 score, and accuracy 

are computed to validate and compare the performance of 

each algorithm. We chose K=10 for k-fold cross-

validation since it balances computational efficiency with 

the reliability of the results. Thus, at each iteration, each 

fold containing 10% of the data represents a test sample, 

and finally, after sufficient iterations, the results are 

averaged. The validation results for the KNN algorithm 

are illustrated in Fig. 2. The results for precision are 

obtained higher than other methods for nearly all cases, 

resulting in the highest average for all cases. Sensitivity 

has the lowest value among the five cases, leading to an 

average of 77.14. The validation methods and subjects in 

Fig. 3 illustrated for LDA are considered the same as 

indicated in Figure 2. The average value of negative 

predictive is 82.2%, the highest value for the five subjects. 

The average accuracy validation result for the LDA 

algorithm is 80.14%. The lowest value of validation 

methods for half of the cases with the lowest average is 

specificity, with a value of 80%. 
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The SVM algorithm's validation results are shown in Fig. 

4. It is seen that the average precision is 81.76% for all 

subjects. For case c, the specificity and sensitivity are both 

82%. The average precision value is also reported as 

80.16%, surpassing other validation methods. For the 

same number of subjects and validation methods, for the 

RBF algorithm, the validation results in Fig. 5 indicate an 

average accuracy of 78.42%. The negative predictive 

value, with an average of 80.55%, has the highest value 

for all cases except for case b. The normalized average 

values for MCC and F1 score are 0.577 and 0.77, 

respectively. Sensitivity with an average of 78.14 has the 

lowest average value compared to other validation 

methods. The validation results for PNN method are 

shown in Fig. 6. Considering the validation methods and 

the number of subjects, the same as previous algorithms, 

the obtained results for negative predictive have the 

highest average for four cases, with an average of 80.57%. 

The validation results for sensitivity, with an average of 

78.57% have the lowest value among all the validation 

methods. The lowest value for both MCC and F1 score, 

with averages of 0.586 and 0775 respectively, is for 

subject b, and the highest value is for subject d. For the 

same validation methods and subjects, the validation 

results for the ELM algorithm in Fig. 7 indicate an average 

accuracy of 80.92%. The average precision value is 

83.93%, having the highest value among other methods 

for six subjects. In comparison, sensitivity has the lowest 

value for nearly all subjects except case E, with an average 

of 79.42%.  

According to the results of validation shown in figures 

2 to 7, it is concluded that ELM is more accurate 

compared to the other methods of classification evaluated 

above. In Fig. 8, the accuracy of all methods is tabulated. 

The results show that ELM performed better compared to 

other methods, while LDA performed second best in 

terms of MCC, sensitivity, and negative predictive value. 

KNN performed worst among all of the validation 

methods. PNN and RBF performed nearly equally, with 

PNN showing a slight edge in certain validation methods.     

Therefore, it is concluded that ELM outperforms other 

classification methods. Conversely, KNN consistently 

yields the lowest average values across all validation 

approaches employed in this study. Nevertheless, 

methods with proven stability, such as LDA and SVM, are 

typically preferred for practical implementations. 

 
Fig. 2. The validation results for the KNN algorithm. 

 

  
Fig. 3. The validation results for LDA algorithm. 

 

 
Fig. 4. The validation results for SVM method. 

 

 
Fig. 5. The validation results for RBF method. 
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Fig. 6. The validation results for PNN method. 

 

 
Fig. 7. The validation results for ELM method. 

Fig. 8. The average values of validation methods obtained from 

KNN, LDA, SVM, RBF, PNN, and ELM algorithms. 

6. Discussion and Conclusion 

In this paper, our primary objective was to classify 

EEG signals from seven individuals accurately to obtain 

well-classified signals suitable for a BCI system. We 

aimed to determine which classification method yields the 

most accurate results. The EEG data used in our study 

were provided by [28] and consisted of data from seven 

healthy participants. The data were recorded using a 59-

channel cap and down-sampled to 100 Hz. Pre-processing 

included initial low-pass filtering using a Chebyshev 

Type II filter of order 10 with a stopband ripple of 50 dB 

down and a stopband edge frequency of 49 Hz. 

Subsequently, the mean was calculated for blocks of 100 

samples. The experiments were run in Matlab 2020b on a 

computer with two cores, 2.7 GHz CPU, and 8 GB RAM. 
Our study aimed to compare the accuracy of three 

different classifiers in classifying EEG signals while 

keeping other signal factors constant. These classifiers 

included statistical methods, neural networks, and 

machine learning techniques. The main findings of our 

research can be summarized as follows: 

1- Among the statistical algorithms, LDA 

demonstrated superior performance to KNN, with 

accuracy rates of 80.14% and 78.21%, respectively.  

2- When comparing the neural network-based 

algorithms, ELM outperformed the others with an 

accuracy of 80.92%, while PNN and RBF achieved 

accuracy rates of only 78.64% and 78.43%, respectively. 

3- Comparing the three approaches, ELM 

demonstrated the highest superiority over other 

algorithms, achieving the highest accuracy. In the 

machine learning category, SVM was the second most 

accurate classification method, with an accuracy rate of 

80.16%. Among the statistical approaches, LDA 

outperformed the remaining algorithms, while KNN 

showed the lowest accuracy among all the proposed 

methods. 

Based on the results, ELM outperformed both 

statistical and neural network approaches in accuracy. 

ELM's superior performance can be attributed to its rapid 

training, robust conclusions, global applicability, and 

strong classification capabilities [43]. On the other hand, 

the results indicated that KNN performed less effectively 

compared to the different algorithms, since the 

performance of the KNN algorithm is influenced by 

various factors, such as distance metrics and the choice of 

k-value, which can significantly impact the classifier's 

performance. Therefore, further investigation of these 

factors is necessary when designing EEG signal 

classifiers to improve accuracy. As also mentioned in the 

study [44], the results of the multi-channel analysis 

indicate that KNN did not perform quite well in this 

matter [44]. The accuracy obtained for SVM, which leads 

to better results compared to KNN, is consistent with [45]-

[48]. In addition, SVM also outperforms LDA, which can 

be attributed to the computational requirements of the 

LDA algorithm. In LDA, calculating the weight factors 

requires the estimation of the inverse of the covariance 

matrix. As a result, in cases involving higher-dimensional 

data with limited samples, the estimations of the 

covariance matrix and its inverse are less accurate and 

affect the overall performance of LDA [44], while the 

SVM algorithm does not depend on the covariance matrix 

and its inverse [49]. Additionally, the results of our work 

on the superiority of ELM compared to SVM and LDA 

are consistent with the results provided in [50]–[54]. In 

[50], which dealt with the classification of motor imagery 

EEG signals in a BCI system, a BCI competition dataset 

and a band-power feature extraction were used in 

experiments. The experimental results showed that the 

ELM method can obtain higher mutual information and 

classification accuracy with medium time consumption, 

compared with the LDA and SVM methods. [51] used a 

feature extraction algorithm based on the discrete wavelet 
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transform and CSP methods in combination, which 

simultaneously utilized time-frequency domain 

information as well as space domain. The classification 

results of extracted features using LDA, ELM, and SVM 

methods showed that ELM has higher classification 

accuracy and a faster learning rate. [52] has proven that 

the ELM method is more efficient than SVM for various 

pattern recognition applications, since in this method, in 

addition to minimizing the training error, the output 

weights norm is also minimized without the need for 

iterative tuning. In [53], phase features were proposed to 

be used in motor imagery classification. A surface 

Laplacian filter was applied to remove the background, 

and a genetic algorithm was used to select sub-features. 

The results showed that classification by ELM performed 

better than classification with LDA. [54] proposed a novel 

semisupervised locality-preserving graph embedding 

model for learning a low-dimensional embedding. 

Experimental results showed that their proposed approach 

achieves higher classification performance compared to 

benchmark methods such as LDA and SVM on various 

datasets. 

Since RBF requires high-dimensional subsets for 

better performance, it can be concluded that it is improper 

for methods with few features [55]. Furthermore, PNN 

inevitably increases the classification time, decreasing its 

usefulness in real-time applications [56]. 

While this study demonstrates the superiority of ELM 

in accuracy, its critical advantage for real-time BCI 

applications lies in its computational efficiency. ELM 

trains several times faster than traditional iterative 

methods (e.g., SVMs, deep networks) due to its single-

step solution. On the other hand, due to its single-layer 

structure and simplicity, the ELM method is compatible 

with EEG signals, which are signals with low complexity. 

EEG signal features (e.g., band-power shifts) often 

require less hierarchical abstraction than image/video data, 

making ELM’s fast and shallow processing sufficient for 

key discrimination patterns. Unlike Convolutional Neural 

Networks (CNNs) or Long Short-Term Memorys 

(LSTMs), which require large data sets, complex training, 

and heavy resources for hierarchical spatio-temporal 

modeling, ELM offers real-time adaptation with minimal 

latency, which is crucial for real-time BCI applications. 

Also, unlike CNNs or LSTMs, ELM avoids costly 

backpropagation and hyperparameter tuning. Thus, these 

features of speed, simplicity, small sample efficiency of 

ELM, and consequently minimal resource requirement 

make this method suitable for EEG signal classification 

and BCI applications. 

It is worth noting that although ELM is superior in 

speed and simplicity for small and feature-based EEG 

datasets, deep learning methods are more suitable for raw 

signal modeling despite higher computational cost. In 

other words, the use of hybrid or deep models may be 

preferred in richer multi-modal tasks [57]. 

Future work should rigorously benchmark ELM 

against CNNs, LSTMs, and hybrid models (e.g., CNN-

LSTM) in terms of accuracy, training speed, use of 

various datasets, and resource utilization for BCI tasks. 

This will determine whether ELM is efficient enough or 

whether deeper models—despite their higher 

complexity—justify their cost for critical real-time 

performance gains. In addition, the small sample size of 

this study limits statistical power and carries the risk of 

overfitting. Also, reliance on a single dataset restricts 

generalizability across different EEG paradigms or 

populations. These constraints motivate future studies and 

validation in larger groups and multiple datasets. 
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